Spectroscopy and chemistry of exoplanets

Jonathan Tennyson
Physics and Astronomy,
University College London

Rennes
Oct 2014

Artist’s impression of HD189733b
C. Carreau, ESA
Transit hunters

Transits of objects down to Earth-size

COROT (CNES/ESA)
32 transiting planets found

KEPLER (NASA)
7 March 2009 – 13 Aug. 2013
954 confirmed planets so far + > 3600 candidates
3000+ planetary candidates discovered by Kepler

Exoplanets are common...
The Exoplanet Revolution

9 to ~2000 in 20 years!
Kepler Planets
As of February 27, 2012

Kepler-14b, 12.7 R_E
Kepler-17b, 14.7 R_E
Kepler-6b, 14.79 R_E
Kepler-8b, 15.86 R_E
Kepler-5b, 16.00 R_E
Kepler-7b, 16.52 R_E
Kepler-12b, 19.0 R_E

Kepler-27c, 4.9 R_E
Kepler-18c, 5.49 R_E
Kepler-18d, 6.98 R_E
Kepler-35b, 8.16 R_E
Kepler-16b, 8.45 R_E
Kepler-34b, 8.56 R_E
Kepler-9c, 9.2 R_E
Kepler-9b, 9.4 R_E
Kepler-30d, 10.7 R_E
Kepler-15b, 10.8 R_E
Jupiter, 11.2 R_E

Kepler-32c, 3.7 R_E
Kepler-33f, 3.83 R_E
Neptune, 3.88 R_E
Kepler-4b, 3.99 R_E
Kepler-27b, 4.1 R_E
Kepler-32b, 4.2 R_E
Kepler-31c, 4.3 R_E
Kepler-31b, 4.5 R_E
Kepler-25c, 4.52 R_E
Kepler-11e, 4.56 R_E
Kepler-33d, 4.56 R_E

Kepler-11c, 3.15 R_E
Kepler-23c, 3.2 R_E
Kepler-28c, 3.4 R_E
Kepler-11d, 3.43 R_E
Kepler-33e, 3.45 R_E
Kepler-26b, 3.6 R_E
Kepler-26c, 3.6 R_E
Kepler-28b, 3.6 R_E
Kepler-29b, 3.6 R_E
Kepler-11g, 3.66 R_E
Kepler-30b, 3.7 R_E

Kepler-19b, 2.21 R_E
Kepler-10c, 2.23 R_E
Kepler-22b, 2.38 R_E
Kepler-24b, 2.4 R_E
Kepler-25b, 2.61 R_E
Kepler-11f, 2.75 R_E
Kepler-33c, 2.75 R_E
Kepler-20d, 2.8 R_E
Kepler-24c, 2.9 R_E
Kepler-29c, 3.07 R_E
Kepler-20c, 3.07 R_E

Kepler-20e, 0.97 R_E
Kepler-20f, 1.03 R_E
Kepler-10b, 1.42 R_E
Kepler-33b, 1.5 R_E
Kepler-21b, 1.64 R_E
Kepler-9d, 1.64 R_E
Kepler-23b, 1.9 R_E
Kepler-20b, 1.91 R_E
Kepler-11b, 1.97 R_E
Kepler-18b, 2.0 R_E

Courtesy of Kepler’s team
HD 209458b

Period = 3.52 days

Mass = 0.69 ± 0.05 M_{Jupiter}

Radius = 1.35 ± 0.04 R_{Jupiter}

Density = 0.35 ± 0.05 g/cm3
HD189733b: Primary transit with Spitzer

Water line list: BT2
Barber et al., 2006

Water, different T-P
Confirmation of Water, methane and hazes!

G. Tinetti (private communication, 2008)
So far discovered:
- Water \(\text{H}_2\text{O} \)
- Methane \(\text{CH}_4 \)
- Carbon dioxide \(\text{CO}_2 \)
- Carbon monoxide \(\text{CO} \)

HCCH / HCN degeneracy

On HD189733b
with more to come

HD189733b: \(T \sim 1300 \text{ K} \)
Too hot for life
Cool atmospheres: dominated by molecular absorption

The molecular opacity problem

Marley & Leggett (2008)
5 year project from May 2011
Provide data for all molecular transitions important for exoplanet atmospheres
Methodology: first principles quantum mechanical calculations, informed by experiment

Frontier Problems in Exoplanet Characterization

- Non-equilibrium processes in exoplanet atmospheres
 \(\text{CH}_4, \text{CO}, \text{NH}_3 \)
 (Stevenson et al. 2010; Madhusudhan & Seager 2011; Moses et al. 2013)

- Constraints on thermal inversions in hot Jupiters
 \(\text{TiO}, \text{VO}, \text{H}_2\text{S} \)
 (Fortney et al. 2008; Spiegel et al. 2009)

- C/O ratios and Carbon-rich atmospheres
 \(\text{H}_2\text{O}, \text{CO}, \text{HCN}, \text{CH}_4, \text{C}_2\text{H}_2, \text{TiH}, \text{FeH} \)
 (Fortney et al. 2008; Spiegel et al. 2009)

- Constraints on exoplanet formation conditions
 \(\text{H}_2\text{O}, \text{CO}, \text{CH}_4 \)
 (Madhusudhan et al. 2011; Oberg et al. 2011)

- Atmospheres and interiors of super-Earths
 \(\text{H}_2\text{O}, \text{CO}_2 \)
 (Bean et al. 2011; Desert et al. 2011; Miller-Ricci Kempton et al. 2011)

Slide courtesy of N Madhusudhan (Cambridge)
Molecular line lists for exoplanet & other atmospheres

<table>
<thead>
<tr>
<th></th>
<th>Primordial (Metal-poor)</th>
<th>Terrestrial Planets (Oxidising)</th>
<th>Giant-Planets & Cool Stars (Reducing atmospheres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Already available</td>
<td>H₂, LiH, HeH⁺, H₃⁺, H₂D⁺</td>
<td>OH, CO₂, O₃, NO, H₂O, HDO, NH₃</td>
<td>H₂, CN, CH, CO, CO₂, TiO, HCN/HNC, H₂O, NH₃,</td>
</tr>
<tr>
<td>ExoMol</td>
<td>O₂, CH₄, SO₂, SO₃, HOOH, H₂CO, HNO₃</td>
<td>CH₄, PH₃, C₂, C₃, HCCH, H₂S, C₂H₆, C₃H₈, VO, O₂, AlO, MgO,</td>
<td></td>
</tr>
<tr>
<td>Available from elsewhere</td>
<td>CH₄, PH₃, C₂, C₃, HCCH, H₂S, C₂H₆, C₃H₈, VO, O₂, AlO, MgO,</td>
<td>CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO</td>
<td></td>
</tr>
<tr>
<td>Already calculated at UCL</td>
<td>CH₄, PH₃, C₂, C₃, HCCH, H₂S, C₂H₆, C₃H₈, VO, O₂, AlO, MgO,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will be calculated during the ExoMol project</td>
<td>CH₄, PH₃, C₂, C₃, HCCH, H₂S, C₂H₆, C₃H₈, VO, O₂, AlO, MgO,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Full details:

www.exomol.com
Why theory, not experiment?
Absorption ($T=300K$) spectrum of NH$_3$: Accuracy

[Graph showing absorption spectrum with experimental and theoretical data]

- **Experiment**
- **Theory**
Absorption \((T=300K)\) spectrum of \(\text{NH}_3\): Accuracy
Absorption ($T=300K$) spectrum of NH$_3$: Accuracy
Absorption ($T=300K$) spectrum of NH$_3$: Accuracy
Completeness: Absorption of ammonia (T=300 K)

Less than 30,000 NH₃ lines known experimentally:
BYTe contains 1.1 billion lines, about 40,000 times as many!

Absorption spectra of 14NH$_3$: Temperature effect

$$I(f \leftarrow i) = S(f \leftarrow i) \frac{e^{-E_i/kT}}{Q(T)} \left[1 - e^{-h \nu_{if}/kT}\right] \frac{8\pi^3 N_A \tilde{V}_{if}}{(4\pi \varepsilon_0)3hc}$$
Method: Spectrum from the “first-principles”

Ab initio calculations

- DMS
- PES

Variational calculations

- Rovibrational wavefunctions
- Rovibrational energies

Intensities (Einstein A_{if})

Refinement

Line list
Ab initio: solve for motion of electrons

Potential energy curve

Solve for the motion of the nuclei

Line list: MgH

Dipole moment curve

MOLPRO

REFINED

LEVEL 8.0
R. Le Roy,
Waterloo, Canada

Line list (in progress): C_2

Potential energy

Dipole moment

Solve for the motion of the nuclei

New program *duo*
Sergei Yurchenko

T. W. Schmidt et al 2011

Istvan Szabo
Dipole moment

LEVEL 8.0
DVR3D

Potential energy

Ab initio: solve for motion of electrons

Ab initio
18 electrons
Ground electronic state

C3

CASSCF
P. Jensen, C. McMichael Rohlfing, and J. Almlöf, 1992,

Line list:

Intensity (cm/mol)
Wavelength (\(\mu\)m)

Solve for the motion of the nuclei

LEVEL 8.0
DVR3D
300 K line list, Clara Sousa-Silva

Potential energy

Ab initio PES

[CCSD(T)/aug-cc-pV(Q+d)Z]

R. I. Ovsyannikov et al.

Refined using lab spectra

Dipole moment

Ab initio:

CCSD(T)/aug-cc-pVTZ

S.N. Yurchenko et al.

First principles

Predictions of tunnelling being investigated

Solve for the motion of the nuclei

TROVE: Yurchenko, Thiel, Jensen

T=300 K ~ 14 M transitions

Hot (T < 1500 K) 16 billion
Ab initio: solve for motion of electrons

Potential energy

9D surface
130,000 geometries
MOLPRO
CCSD(T)-f12/QZ

Dipole moment

Three 9D surfaces
130,000 geometries
MOLPRO
CCSD(T)-f12/QZ

Solve for the motion of the nuclei

TROVE
Yurchenko, Thiel, Jensen

10 to 10

Line list:

9.8 Billion transitions
\[I(f \leftarrow i) = S(f \leftarrow i) \frac{e^{-E_i/kT}}{Q(T)} \left[1 - e^{-hc\tilde{v}_{if}/kT} \right] \frac{8\pi^3 N_A \tilde{v}_{if}}{(4\pi \varepsilon_0)^3hc} \]

CH₄ diagonalization: Size of the problem

Acknowledgment: Andrey Kaliazin Dirac/COSMOS
CH$_4$ diagonalization: Size of the problem

Number of eigenvalues N

Matrix dimension (F symmetry)

16 nodes = 1 DARWIN socket

2.5 hours

15 hours

6 hours
CH$_4$ diagonalization: Size of the problem

Matrix dimension (F symmetry)

Number of eigenvalues

- **COMSOS II**: 4 hours, 64 cores
- **DARWIN**: 6 hours, 96 cores
- 9 hours, 144 cores
- 11 hours, 160 cores
NH$_3$ diagonalization: Size of the problem

- Dimension of the matrix
- Non-zero part
- Number of eigenvalues below 18000 cm$^{-1}$

LAPACK: DSYEV
PARPACK

Graph showing the growth of dimension, non-zero part, and number of eigenvalues below 18000 cm$^{-1}$ with respect to J.
Absorption spectra of CH$_4$: from experimental line list

- HITRAN12: ~350000 lines
- ExoMol: ~10^{10} lines
The image shows a graph with the x-axis labeled as 'wavenumber 1/cm' and the y-axis labeled as 'intensity, cm/molecule'. The graph is labeled 'HITRAN12' and contains data points depicted in blue and red. The graph also includes a label '10to10' at the top.
Temperature-dependent colours of methane
Model of a T4.5 Brown Dwarf: a “methane dwarf”

SN Yurchenko, J Tennyson, J Bailey, MDJ Hollis, G Tinetti, PNAS, 111, 9379 (2014)
In progress: HNO₃ and C₂H₄

Calculated spectra for Nitric Acid

Calculated spectra for Ethylene

The region of 0 - 1800 cm⁻¹

The region of 700 - 3250 cm⁻¹

Anatoly Pavlyuchko
• 50,000 processor hours.

• Wavefunctions > 0.8 terabites

• 221,100 energy levels (all to J=50, E = 30,000 cm\(^{-1}\))
 14,889 experimentally known

• 506 Million transitions (PS list has 308M)
 >100,000 experimentally known with intensities

∀ → Partition function 99.9915% of Vidler & Tennyson’s value at 3,000K

BT2 linelist
http://www.tampa.phys.ucl.ac.uk/ftp/astrodata/water/BT2/
Brown and M-dwarfs

Atmosphere of Venus

Exoplanets (4 so far!)

BT2 linelist used to detect/model water

Nova-like V838 Mon

Cometary coma
As well as.....

Water concentrations in explosions

Imaging gas turbine engines

Atmospheric models

Remote detection of forest fires

Design of high-T gas sensors

Temperature profile in flames
ExoMol: List of molecules

Molecular line lists for exoplanet & other atmospheres

<table>
<thead>
<tr>
<th>Primordial (Metal-poor)</th>
<th>Terrestrial Planets (Oxidising)</th>
<th>Giant-Planets & Cool Stars (Reducing atmospheres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Already available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂, LiH</td>
<td>OH, CO₂, O₃, NO</td>
<td>H₂, CN, CH, CO, CO₂, TiO</td>
</tr>
<tr>
<td>HeH⁺, H₃⁺</td>
<td>H₂O, HDO, NH₃</td>
<td>HCN/HNC, H₂O, NH₃</td>
</tr>
<tr>
<td>H₂D⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExoMol</td>
<td>O₂, CH₄, SO₂, SO₃</td>
<td>CH₄, PH₃, C₂, C₃, HCCH, H₂S,</td>
</tr>
<tr>
<td></td>
<td>HOOH, H₂CO, HNO₃</td>
<td>C₂H₆, C₃H₈, VO, O₂, AlO, MgO,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CrH, MgH, FeH, CaH, AlH, SiH,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TiH, NiH, BeH, YO</td>
</tr>
</tbody>
</table>

Full details: www.exomol.com
Molecular line lists for exoplanet & other atmospheres

<table>
<thead>
<tr>
<th></th>
<th>Primordial (Metal-poor)</th>
<th>Terrestrial Planets (Oxidising)</th>
<th>Giant-Planets & Cool Stars (Reducing atmospheres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Already available</td>
<td>H₂, LiH, HeH⁺, H₃⁺, H₂D⁺</td>
<td>OH, CO₂, O₃, NO, H₂O, HDO, NH₃</td>
<td>H₂, CN, CH, CO, CO₂, TiO, HCN/HNC, H₂O, NH₃,</td>
</tr>
<tr>
<td>ExoMol In progress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requested</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Released</td>
<td>by ExoMol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O₂, CH₄, SO₂, SO₃, HOOH, H₂CO, HNO₃</td>
<td>CH₄, PH₃, C₂, C₃, HCCCH, H₂S, C₂H₄, C₂H₆, VO, O₂, AlO, MgO, CrH, MgH, FeH, CaH, AlH, SiH, TiH, NiH, BeH, YO, NaH, HF, HCl, NO₂, N₂O, SiO, CS, NaCl, KCl, PN, SH, SiH, AlH</td>
<td>www.exomol.com</td>
</tr>
</tbody>
</table>

Full details:
MSc students: SiO, CS, NaCl, KCl
Citizen scientist: AlH
About the first edition
“The best book for anyone who is embarking on research in astronomical spectroscopy”
Contemporary Physics (2006)

Published 2011