Physique & Chimie du Milieu Interstellaire AstroRennes 2014

Hydrogenated Amorphous Carbons evolution of interstellar carbon dust

Marie Godard

Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM, Université Paris-Sud, Orsay)

Observables Properties Evolution Focus on experimental studies

How are observed interstellar a-C:H ?

How are observed interstellar a-C:H ?

How are observed interstellar a-C:H ?

Spectral signatures of aliphatic C-H vibrations

To detect interstellar a-C:H

- → high quantities of diffuse ISM
- \Rightarrow lines of sight with high visual extinction (A_v)

Comparison of observations with laboratory analogs spectra

Comparison of observations with laboratory analogs spectra

Interstellar a-C:H analogs: Mennella et al. (1999, 2003) Scott & Duley (1994, 1996, 1997) Schnaiter et al. (1998) Gadallah et al. (2011) From plasma: Sakata & Wada (1992, 2009) Lee & Wdowiak (1993) Furton et al. (1999) Godard et al (2010, 2011) Alata et al (2014)

Dartois et al. (2004,2005)

at low temperature

from $C_n H_m$ ices :

Comparison of observations with laboratory analogs spectra

IAS

O content : very low

 $CH_2/CH_3 \sim 2 - 2,5$

H content : $X_H > 20\%$

Pendleton & Allamandola (2002) Dartois et al. (2007)

> Sandford et al. (1991) Pendleton et al. (1994) Duley et al. (2005)

> > Dartois et al. (2007)

O content : very low

 $CH_2/CH_3 \sim 2 - 2,5$

H content : $X_H > 20\%$

Pendleton & Allamandola (2002) Dartois et al. (2007)

> Sandford et al. (1991) Pendleton et al. (1994) Duley et al. (2005)

> > Dartois et al. (2007)

Pendleton & Allamandola (2002)

O content : very low

 $CH_2/CH_3 \sim 2 - 2,5$

H content : $X_H > 20\%$

Aromatic : $(CH)_{arom}/(CH)_{aliph} < 8\%$

Pendleton & Allamandola (2002) Dartois et al. (2007)

> Sandford et al. (1991) Pendleton et al. (1994) Duley et al. (2005)

> > Dartois et al. (2007)

Dartois et al. (2007)

Pendleton & Allamandola (2002)

O content : very low

 $CH_2/CH_3 \sim 2 - 2,5$

H content : $X_H > 20\%$

Aromatic : $(CH)_{arom}/(CH)_{aliph} < 8\%$

Pendleton & Allamandola (2002) Dartois et al. (2007)

> Sandford et al. (1991) Pendleton et al. (1994) Duley et al. (2005)

> > Dartois et al. (2007)

Dartois et al. (2007)

Pendleton & Allamandola (2002)

Dartois et al. (2007)

O content : very low

 $CH_2/CH_3 \sim 2 - 2,5$

H content : $X_H > 20\%$

Aromatic : $(CH)_{arom}/(CH)_{aliph} < 8\%$

Pendleton & Allamandola (2002) Dartois et al. (2007)

> Sandford et al. (1991) Pendleton et al. (1994) Duley et al. (2005)

> > Dartois et al. (2007)

Dartois et al. (2007)

Dartois et al. (2007)

Abundance of interstellar a-C:H : (CH)_{aliph}/C_{cosmic} ~ 10 to 35 %

Optical properties of a-C:H

Absorption

Infrared

Band gap energy

Optical properties of a-C:H

- Absorption

Infrared

→ Emission

Visible photoluminescence (induced by UV-visible absorption)

Optical properties of a-C:H

-> Absorption

Infrared

Emission

Visible photoluminescence (induced by UV-visible absorption)

Models of a-C(:H)

optEC_(s)(a) Jones, A&A (2012, a-c) → model of the optical constants → function of the band gap → size-dependent properties

Model : Jones et al, A&A (2013) evolution of interstellar a-C(:H)

Evolution of the 3.4 µm band carriers in the interstellar medium

Diffuse interstellar medium

3.4 µm band observed

Evolution of dust due to:

Hydrogen atoms exposition UV irradiation Cosmic rays irradiation Dense interstellar medium

3.4 µm band not observed

Very low upper limit : Muñoz Caro et al. (2001)

Evolution/processing of a-C:H in interstellar medium

Exposition to H atoms

Mennella et al, ApJ (1999, 2002, 2006)

 \Rightarrow 3.4, 6.9 & 7.3 µm absorption band \nearrow

 \Rightarrow Formation of aliphatic C—H bond by exposure to H atoms flux

Formation of aliphatic C-H dust component occurs in diffuse ISM

Exposition to UV photons

Mennella et al, A&A (2001)

- \Rightarrow Dehydrogenation (3.4 µm absorption band \searrow)
- \Rightarrow C-H destruction cross section : $\sigma_{d,UV} = 10^{-19} \text{ cm}^2/\text{photon}$

Destruction of aliphatic C-H dust by interstellar radiation field in diffuse ISM, but this effect is **counteracted** by H exposure.

Exposition to UV photons

Mennella et al, A&A (2001)

- \Rightarrow Dehydrogenation (3.4 µm absorption band \searrow)
- \Rightarrow C-H destruction cross section : $\sigma_{d,UV} = 10^{-19} \text{ cm}^2/\text{photon}$

Destruction of aliphatic C-H dust by interstellar radiation field in diffuse ISM, but this effect is **counteracted** by H exposure.

Gadallah, Mutschke & Jäger, A&A (2011)

- \Rightarrow Dehydrogenation (3.4 µm absorption band \searrow)
- Graphitization
- Production of a new absorption band at 217,5 nm

UV-irradiated a-C:H involved in the **UV bump** at 217,5 nm ? (C abundance problem)

Exposition to UV photons

Mennella et al, A&A (2001)

- \Rightarrow Dehydrogenation (3.4 µm absorption band \searrow)
- \Rightarrow C-H destruction cross section : $\sigma_{d,UV} = 10^{-19} \text{ cm}^2/\text{photon}$

Destruction of aliphatic C-H dust by interstellar radiation field in diffuse ISM, but this effect is **counteracted** by H exposure.

Gadallah, Mutschke & Jäger, A&A (2011)

- \Rightarrow Dehydrogenation (3.4 µm absorption band \searrow)
- Graphitization
- Production of a new absorption band at 217,5 nm

UV-irradiated a-C:H involved in the **UV bump** at 217,5 nm ? (C abundance problem)

Alata, Cruz-Diaz, Muñoz Caro & Dartois, A&A (2014)

- → Dehydrogenation (3.4 µm absorption band \searrow) $\sigma_{d,UV} = 3 \ 10^{-19} \ cm^2/photon$
- \Rightarrow Efficient production of H₂ molecules
- within the bulk of a-C:H
- Production of small hydrocarbons (CH₄)

Photo-processed a-C:H is a efficient source of H₂ and small hydrocarbons, at low to high T

96% of broken $C-H => H_2$

Exposition to energetic ions

A large range of ≠ ions and energies were used to simulate cosmic rays :

TANDEM accelerator (IPN Orsay)

TANDEM lons

characteristic destruction time of aliphatic C-H by cosmic rays: ~ a few 10⁸ years

 $>> 10^7$ years : lifetime of an interstellar cloud

Godard et al, A&A (2011)

Evolution of the 3.4 μ m band in interstellar medium

Interstellar Medium	Diffuse	Interface	Dense
	Bare grains	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lee coated grains
3.4 µm band	observed		Not observed
Destruction time by cosmic ray	10 ⁸ years	10 ⁸ years	10 ⁸ years
Destruction time by UV photons	4 10 ³ years		$\gtrsim 10^7$ years
Formation time by H atoms	2 10 ³ years		inefficient
Destruction/Formation of aliphatic C-H	Efficient formation	Efficient destruction ?	Slow destruction

Godard et al, A&A (2011)

Conclusion

a-C:H are a major component of interstellar carbonaceous dust in the diffuse ISM

a-C:H dust constantly **evolve** in response to their interstellar environments

a-C:H evolution could lead to formation of other interstellar components (H2, small hydrocarbon molecules, link with PAHs, ...)

Collaborators

CSNSM (Orsay) J. Duprat C. Engrand

CAB (Madrid) G. Muñoz Caro

IAS (Orsay) E. Dartois R. Brunetto L. d'Hendecourt

ISMO (Orsay) T. Pino P. Bréchignac G. Féraud Y. Carpentier

Gemini Obs. (Hawai) T. Geballe