Results of the CALYPSO survey of young solar-prototars: chemistry, dynamics and disk formation

Sébastien Maret (IPAG), Anaëlle Maury (CEA), Philippe André (CEA), Sibylle Anderl (IPAG), and the CALYPSO team
Why studying Class 0 protostars?

• Youngest protostars: initial conditions for star formation

• Crucial phase for the future evolution of the star: final mass, formation of the protoplanetary disk

• Yet, their structure on 100 AU scales is poorly known:
 • Are protostars single or multiple? Are disks present?
 • What is the launching mechanism of outflows?
 • What is the physical and chemical structure of the envelopes?
CALYPSO

- IRAM Large Program (PI Philippe André)
- Survey of the 17 of the closest Class 0 protostars (d < 300 pc)
- 8 lines and continuum at 1 and 3 mm
- Spatial resolution at 1 mm of 1’’ or better (i.e. between 100-300 AU)
NGC1333-IRAS2

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \approx 20 L_\odot$
 - $M_{env} \approx 1.7 M_\odot$
- Observed with the Plateau de Bure interferometer at 0.8” resolution (~200 AU)

Maret et al.; Maury et al.; Codella et al. (2014)
Outflow
Envelope and outflow
Inner envelope
Methanol emission

- Compact (0.4” i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope

- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk
Methanol emission

- Compact (0.4” i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope

- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk
Methanol emission

- Compact (0.4” i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope

- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk
Complex organics emission

- Many complex organics are detected and resolved spatially
- Emission sizes are consistent with the ice sublimation radius: hot corino
Complex organics emission

- Many complex organics are detected and resolved spatially
- Emission sizes are consistent with the ice sublimation radius: hot corino
NGC1333-IRAS4B

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \simeq 17 L_\odot$
 - $M_{env} \simeq 3.1 M_\odot$
- Anticorrelation between N_2H^+ and $C^{18}O$: due to the CO ice evaporation

Anderl et al. in prep.
NGC1333-IRAS4B

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \approx 17 \, L_{\odot}$
 - $M_{env} \approx 3.1 \, M_{\odot}$
- Anticorrelation between N_2H^+ and C^{18}O: due to the CO ice evaporation

Anderl et al. in prep.
Complex organics emission

- 22 species (mostly COMs) are detected
- The chemical composition of IRAS4B is similar to that of IRAS2
- Most COMs lines arise in the hot corino, but some of the low excitation lines are also present along the outflow

Anderl et al. in prep.
Complex organics emission

22 species (mostly COMs) are detected.

The chemical composition of IRAS4B is similar to that of IRAS2.

Most COMs lines arise in the hot corino, but some of the low excitation lines are also present along the outflow.

Anderl et al. in prep.
L1527

- Class 0 protostar located in Taurus (140 pc)
- \(L_{bol} \approx 1.6 L_\odot \)
- \(M_{env} \approx 0.8 - 1.7 M_\odot \)
- Tobin et al. (2012): Keplerian disk seen in \(^{13}\)CO (2-1)

Maret et al. in prep.
• ^{13}CO and ^{18}CO emission are inconsistent with Keplerian rotation, but originate in the rotating and infalling envelope:

$$|v - v_{\text{LSR}}| \propto 1/r^\beta \text{ with } \beta \approx 1$$

• SO emission is consistent with Keplerian rotation

$$|v - v_{\text{LSR}}| \propto 1/r^\beta \text{ with } \beta \approx 0.5$$
SO emission is well reproduced by a Keplerian disk model with a central mass of 0.2 Msun, and a centrifugal radius of 150 AU (see also Sakai et al. 2014)
First statistical results: disks

- Only one source with a large (> 100 AU) Keplerian disk
- Large Keplerian disks are uncommon in Class 0 protostars!
- L1527 is probably more evolved than other Class 0 protostars
- Evolutionary effect?
First statistical results: COMs

- Five sources have complex organic molecule emission

- High luminosity sources:
 \[L_{bol} \geq 6 L_\odot \]

- Sensitivity effect?

- Chemical variations from one source to the other
Conclusions

• Diversity among the physical and chemical properties of the Class 0 protostars

• Keplerian disks are uncommon

• Complex organics are detected only in the most luminous protostars

• Outflow properties also vary (e.g. collimation)

• (Sub-)millimeter surveys are important to understand the formation and evolution of these objects