Bright CO from the Interaction of a runaway O star with diffuse ISM

P. Gratier (Obs. de Bordeaux), J.Pety (IRAM) P. Boissé (IAP), S. Cabrit, M. Gerin, P. Lesaffre (Obs. Paris) G. Pineau Des Forêts (IAS)

BENCHMARKING STELLAR FEEDBACK

- Context : **star formation** and its **feedback** on the ISM
- Individual processes:
 - ionization
 - radiation pressure on dust + friction on gas
 - stellar winds
- Difficult to disentangle in massive star forming regions (eg Orion)

- Massive runaway stars are ideal to study relative importance of the physical processes
 - Not that rare
 - Can be found in clean environment (no recent SF, no high outside ISRF)
 - Fast speed => study of **out of equilibrium** effects

THE STAR: AE AURIGAE (HD34078)

- HD34078 is an O9.5V runaway star :
 - Traced back to binary-binary collision in Orion Trapezium region
 2.5×10⁶ years ago (other ejected star: mu Columbae)
- Distance : 530 pc

Observer

- Proper motion : $\mu = 43$ mas/yr (Vt = 140 km/s) \longrightarrow Vspace ~150 km/s
- Radial velocity :Vr = 50 km/s
- V_{wind} ~ 800 km/s dM/dt ~ 10^{-9.5} M_{sun}/yr L_{bol}~8×10⁴ L_{sun}
- Visible absorption: studying the au-scale diffuse ISM (Rollinde et al 2003 Boissé et al 2005)

=1000yr

THE AMBIENT MEDIUM: IC405

- Blaauw 1953 and Herbig 1958 noted the recent interaction with Flaming Star Nebula (IC405).
 - Star cleaned southern part of dust and gas
- B Band image : dust scattering enhanced in the forward direction
- This interaction was confirmed by Boissé et al. 2005 through UV absorption studies (large amount of excited H₂)
- Diffuse environment: no CO detection in Dame et al. (or Planck maps)

Red: Halpha, Blue : B band

Adam Block/Mount Lemmon SkyCenter/Univ. of Arizona

What is Known from UV/Vis Absorption

- Rocket-borne ultraviolet (France et al. 2004):
 - ratio of nebular/star spectra increase in the blue region of the spectrum
 - Predict a small (<20'') fragment in front of the star

Ratio of nebular surface brightness to star flux :

- H₂ with FUSE (Boissé et al 2005)
 - Large amount of excited H_2 (J>5) on the line of sight
 - Photodissociation Region close to the star ($\chi = 5 \times 10^2 10^4$ @ 0.2pc, n_H= 5×10³-5×10⁴ cm⁻³)
 - Rare occurrence : one of 2 known such stars (other HD37903)

HIGH RESOLUTION CO TOWARDS HD34078

- PdBI observations (Gratier et al 2014, A&A)
- CO(I-0) @ 4.4" resolution
- Bright globulettes (I-3K peak temperature)
- One just in front of and close (0.2pc) to the star
 => Explains the peculiar properties

HIGH RESOLUTION CO TOWARDS HD34078

- PdBI observations (Gratier et al 2014, A&A)
- CO(I-0) @ 4.4" resolution
- Bright globulettes (1-3K peak temperature)
- One just in front of and close
 (0.2pc) to the star
 => Explains the peculiar
 properties
- Distance star IR arc wind mass flux may be 300-1000 times larger the UV measurements

(see weak wind problem e.g. zeta Oph (Gvaramadze et al. 2012))

WIDE FOV CO WITH IRAM 30M

- Simultaneous:
 ¹²CO(1-0), ¹²CO(2-1),
 ¹³CO(1-0), ¹²CN(1-0).
- No signal in Dame et al. survey (9') or Planck (15')
 @ IK Km/s sensitivity
- ~25 globules (~10K Tpeak) mainly along dust ridge
- timescale for CO photodissociation
 - t=3x10⁵ yr/chi
 (Av = 0.1-1mag, nH = 100 cm⁻³)
 - chi = 10^{2} - 10^{4} G0
 - few 10² yr

30h: 200 square arcminutes 0.2 K @ 22'' and 0.5 km/s channels B Band [units]

500

0

WIDE FOV CO WITH IRAM 30M

- Zooming in on the closest clumps to the star
- CO coincides with dust bright/Halpha dark ridge

H2-CO FACTOR IN TRANSLUSCENT GAS

- Dust extinction measured from Halpha
- Av \sim 2-3 => Transluscent gas
- Standard X factor ($N_{H2}/I_{CO} = 2 \times 10^{20} \text{ cm}^{-2}/(\text{Kkm/s})$ can be used.

CLUMP PROPERTIES

- LVG modelling (RADEX+MCMC) of all observed lines (including upper limits)
- Typical results (molecular gas)
 - dense (10⁵-10⁶ cm-3)
 - cool (20 40K)
 - mass: 0.1-1 Msun
- Molecularly rich: detected species in the clumps closest to star (chi~10³)

 $C_2H, C_3H_2, C_4H, HCN, HCO^+,$ HNC, CS, CN, C¹⁸O, ¹³CO

• Chemistry at 10³–10⁴ yr timescales

CLUMP DYNAMICS

• Energy balance thermal+turb, gravitational terms

$$2\mathcal{T} = \frac{3M\Delta V_{\rm FWHM}^2}{8\ln 2} \quad \mathcal{G} = \eta \frac{GM^2}{R}$$

- Pressure terms:
 - Ionisation pressure

$$\mathcal{I}_{\mathcal{RDI}} = 2\pi R^3 P = \frac{4R^2 k_{\rm B} T_{\rm II}}{D} \left(\frac{3\pi \dot{\mathcal{N}}_{\rm LyC} R}{\alpha_{\star}}\right)^{1/2} \qquad \text{RDI}$$

$$\mathcal{I}_{HII} = 4\pi R^3 P = \frac{4\pi R^3 n_{II} k_B T_{II}}{D}$$
 Ambient HII region

Radiation pressure

$$\mathcal{P} = 2\pi R^3 P_{rad} = 2\pi R^3 \alpha \frac{L_{bol}}{4\pi cD^2} = \frac{\alpha R^3 L_{bol}}{2cD^2}$$

• Stellar winds

CLUMP DYNAMICS

• Energy balance thermal+turb, gravitational terms

- Pressure terms:
 - Ionisation pressure

$$I_{RDI} = 2\pi R^{3} P = \frac{4R^{2}k_{B}T_{II}}{D} \left(\frac{3\pi \dot{N}_{LyC}R}{\alpha_{\star}}\right)^{1/2} RDI$$

$$\mathcal{I}_{\mathrm{H\,II}} = 4\pi R^3 P = \frac{4\pi R^3 n_{\mathrm{II}} k_{\mathrm{B}} T_{\mathrm{II}}}{D}$$

Ambient HII region

Radiation pressure

$$\mathcal{P} = 2\pi R^3 P_{rad} = 2\pi R^3 \alpha \frac{L_{bol}}{4\pi c D^2} = \frac{\alpha R^3 L_{bol}}{2cD^2}$$

• Stellar winds

QUESTIONS TO BE ANSWERED

- Are the clumps preexisting or created by the interaction.
 - What is the minimal initial overdensity needed to create 10⁵–10⁶ cm⁻³ globules?
- Why are there no clumps and no dust to the south.
- Shape of the bow shock (cubic) / radiation pressure on dust (parabola)

A COHERENT PICTURE ?

- Ionization from HD34078 enhances inhomogeneity through RDI => formation of clumps to 500 the north
- Dust as accumulates on parabolic interface because of radiation pressure.
- Gas and biggest grains are decoupled
- CO rapidly photodissociates inside the parabola

B Band [units]

0

500

NOEMA: WIDE FOV + HIGH ANGULAR RES.

34°20'00''

34°15'00''

34°10'00''

- PDBI 150 pointing mosaic 34°25'00'' @ 5''
- some clumps subdivide
- new even smaller globulettes
- few tens of Mjup
- clumps are brighter : 30K peak temperature

NOEMA: WIDE FOV + HIGH ANGULAR RES.

34°20'00''

34°15'00''

34°10'00''

- PDBI 150 pointing mosaic 34°25'00'' @ 5''
- some clumps subdivide
- new even smaller globulettes
- few tens of Mjup
- clumps are brighter : 30K peak temperature

FINAL WORDS

- Bright CO detected near fast O type star in an otherwise diffuse nebula
- Transluscent, dense, cold globules that are found (mostly) along a parabolic dust ridge
- Study elementary stellar feedback processes

- How common is this ?
 - **survey** of runaway stars in CO with 30m telescope
 - detection in 2 of 4 sources

