H_2 in Space[©]

Jacques Le Bourlot Université Paris-Diderot & LERMA Observatoire de Paris

October 2014

H_2 in Space

$\rm H_2$ Structure

 H_2 Dissociation

 $\rm H_2$ Formation

 ${\rm H}_2$ and metallicity

 $\rm H_2$ Without dust

Conclusion

Neufeld & Yuan, ApJ, 2008 - S443 SNR Red: K band $H_2 1 - 0 S(1)$

Homonuclear and light \Rightarrow

Homonuclear and light \Rightarrow No dipolar transitions

Homonuclear and light \Rightarrow No dipolar transitions No formation in gas phase

Homonuclear and light \Rightarrow No dipolar transitions No formation in gas phase No direct UV dissociation

Homonuclear and light \Rightarrow

No dipolar transitions

- No formation in gas phase
- No direct UV dissociation

Formation releases $4.5 \,\mathrm{eV}$

Homonuclear and light \Rightarrow

- No dipolar transitions
- No formation in gas phase
- No direct UV dissociation
- Formation releases $4.5 \,\mathrm{eV}$
- Lowest transitions are high:
 - $J=2\rightarrow 0:\ 509.8\,\mathrm{K}$
 - $J=3\rightarrow1:\,844.6\,\mathrm{K}$
- Source of secondary photons.

H_2 **Destruction**

 H_2 Structure

 H_2 Dissociation

Destruction

Self-Shielding

 H_2 Formation

 H_2 and metallicity

 H_2 Without dust

Conclusion

UV transitions:

- Pumping in Lyman $(B^{1}\Sigma_{u}^{+})$ and Werner systems $(C^{1}\Pi_{u})$
- Discrete transition, either to $X^{1}\Sigma_{g}^{+}$ (88 %) or to the continuum.
- In free space, for Draine's field $k_D^0 = 5.8 \, 10^{-11} \, \mathrm{s}^{-1}$.

H_2 **Destruction**

 H_2 Structure

 H_2 Dissociation

Destruction

Self-Shielding

 H_2 Formation

 H_2 and metallicity

 H_2 Without dust

Conclusion

UV transitions:

• Pumping in Lyman $(B^{1}\Sigma_{u}^{+})$ and Werner systems $(C^{1}\Pi_{u})$

• Discrete transition, either to $X^{1}\Sigma_{g}^{+}$ (88 %) or to the continuum.

- In free space, for Draine's field $k_D^0 = 5.8 \, 10^{-11} \, \mathrm{s}^{-1}$.
- Within a cloud:

 $k_D = k_D^0 I_{UV} \exp(-\sigma_g (N_1 + 2N_2)) f_{shield}(N_2)$

 $N_1 \& N_2$: Column densities of H and H₂, σ_g : grain absorption, I_{UV} : radiation field strength.

H_2 Self-Shielding

H_2 Self-Shielding

H_2 Formation

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

Formation

Problems

H / H2 transition

 H_2 and metallicity

 H_2 Without dust

Conclusion

Formation on grains \Rightarrow by default

$$\frac{d[\mathrm{H}_2]}{dt} = R_f \, n_\mathrm{H} \, n(\mathrm{H})$$

Copernicus (Jura, (1975) ApJ 197, 575):

$$R_f \sim 3 \, 10^{-17} \, \mathrm{cm}^3 \, \mathrm{s}^{-1}$$

 Details still under investigation (see talk by Emeric Bron, following mine)

H₂ formation(traditional view)

■ Rate: ?

Rate: known from observations

Rate: Proportional to v_T , n(H) and n_{gr}

Rate:
$$\sim 3 \, 10^{-17} \sqrt{\frac{T}{100}} \, Z' \, n_H \, n(\text{H}) \, \text{cm}^{-3} \, \text{s}^{-1}$$

- Eley-Rideal (ER)

${\rm H}_2$ formation - Full computation

Conclusion

${\rm H}_2$ formation - Problem I

Evaporation is fast from hot grains.

${\rm H}_2$ formation - Problem II

Grains are very small.

${\rm H}_2$ formation - Fluctuations rescue!

$\rm H_2$ Structure

 $\rm H_2$ Dissociation

 H_2 Formation

Formation

Problems

H / H2 transition

 H_2 and metallicity

 $\rm H_2$ Without dust

Conclusion

Requires statistical computation of fluctuations See following presentation by Emeric Bron Bron et al. (2014), A&A 569, 100

H_2 formation - Fluctuations rescue!

$\rm H_2$ Structure

 $\rm H_2$ Dissociation

- H_2 Formation
- Formation
- Problems
- H / H2 transition
- $\rm H_2$ and metallicity
- ${
 m H}_2$ Without dust
- Conclusion

- Requires statistical computation of fluctuations See following presentation by Emeric Bron Bron et al. (2014), A&A 569, 100 Take home message:
 - Crude evaluation: rate equations OK (e.g. in MHD codes).
 - Grain physics: full statistical formalism required.

$\rm H/\rm H_2$ transition

To first order, depends on $I_{UV}/n_{ m H}$:

$\rm H/\rm H_2$ transition

To first order, depends on $I_{UV}/n_{ m H}$:

${\rm H}_2$ and metallicity

 H_2 Structure H_2 Dissociation

 $\rm H_2$ Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field Metallicity

 H_2 Without dust

Conclusion

Adapted from Sternberg et al. (2014), ApJ 790, 10.

www.behance.net/MattiasA

${\rm H}_2$ Constant Formation/Destruction Approximation

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

With a constant formation rate R_f and density $n_{\rm H}$:

 $R_f n_{\rm H} n({\rm H}) = k_D n({\rm H}_2)$

${\rm H}_2$ Constant Formation/Destruction Approximation

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

With a constant formation rate R_f and density $n_{\rm H}$:

$$R_f n_{\rm H} n({\rm H}) = k_D n({\rm H}_2)$$

$$R_f = 3 \, 10^{-17} \sqrt{\frac{T}{100}} Z' \, \text{cm}^3 \, \text{s}^{-1}$$
$$k_D = k_D^0 f(N_2) \, \exp\left(-\sigma_g \, \left(N_1 + 2N_2\right)\right) \, \text{s}^{-1}$$
$$\sigma_g \simeq 1.9 \, 10^{-21} \, Z' \, \text{cm}^2 \, \text{H}^{-1}$$

${\rm H}_2$ Constant Formation/Destruction Approximation

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

With a constant formation rate R_f and density $n_{\rm H}$:

$$R_f n_{\rm H} n({\rm H}) = k_D n({\rm H}_2)$$

$$R_f = 3 \, 10^{-17} \sqrt{\frac{T}{100}} Z' \, \text{cm}^3 \, \text{s}^{-1}$$
$$k_D = k_D^0 f(N_2) \, \exp\left(-\sigma_g \, \left(N_1 + 2N_2\right)\right) \, \text{s}^{-1}$$
$$\sigma_g \simeq 1.9 \, 10^{-21} \, Z' \, \text{cm}^2 \, \text{H}^{-1}$$

Equation is separable:

$$n(\mathbf{H}) = \frac{dN(\mathbf{H})}{ds} = \frac{dN_1}{ds}; \quad n(\mathbf{H}_2) = \frac{dN(\mathbf{H}_2)}{ds} = \frac{dN_2}{ds}$$
$$R_f n_{\mathbf{H}} \exp(\sigma_g N_1) \ dN_1 = k_D^0 f(N_2) \exp(-\sigma_g 2N_2) \ dN_2$$

${\rm H}_2$ Constant Formation Approximation

- H_2 Structure H_2 Dissociation
- $\rm H_2$ Formation
- H₂ and metallicity N(H) from N(H2)
- Analysis
- Field
- Metallicity
- $\rm H_2$ Without dust
- Conclusion

$$N_1 = \frac{1}{\sigma_g} \log \left(1 + \frac{k_D^0 \sigma_g}{R_f n_{\rm H}} \int_0^{N_2} f(N) \exp\left(-2\sigma_g N\right) \, dN \right)$$

${\rm H}_2$ Constant Formation Approximation

 H2
 Structure

 H2
 Dissociation

 H2
 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

$$N_1 = \frac{1}{\sigma_g} \log \left(1 + \frac{k_D^0 \sigma_g}{R_f n_{\rm H}} \int_0^{N_2} f(N) \exp\left(-2\sigma_g N\right) dN \right)$$

Draine and Bertoldi (1996) give:

$$f(x) = \frac{0.965}{\left(1 + \frac{x}{b_5}\right)^2} + \frac{0.035}{\left(1 + x\right)^{0.5}} \exp\left(-8.5\,10^{-4}\,\left(1 + x\right)^{0.5}\right)$$

with $x = \frac{N}{N_0}$, $N_0 = 5 \, 10^{14} \, \text{cm}^{-2}$ and $b_5 = \frac{b}{10^5 \, \text{cm} \, \text{s}^{-1}}$ \Rightarrow Analytical integration is possible.

Comparison to model

Notice effect of chemistry at high $N(H_2)$.

10¹⁸

 $\rm H_2$ Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

Back to:

$$N_1(N_2) = \frac{1}{\sigma_g} \log \left(1 + \frac{k_D^0 \sigma_g}{R_f n_{\rm H}} \int_0^{N_2} f(N) \exp \left(-2\sigma_g N \right) \, dN \right)$$

 $\rm H_2$ Structure

 $\rm H_2$ Dissociation

 $\rm H_2$ Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

Back to:

$$N_1(N_2) = \frac{1}{\sigma_g} \log \left(1 + \frac{k_D^0 \sigma_g}{R_f n_{\rm H}} \int_0^{N_2} f(N) \exp\left(-2\sigma_g N\right) \, dN \right)$$

We set:

$$\alpha = \frac{2 k_D^0}{R_f n_{\rm H}}; \quad G(N_2) = \sigma_g \int_0^{N_2} f(N) \exp(-2\sigma_g N) \, dN$$
$$N_1(N_2) = \frac{1}{\sigma_g} \log\left(1 + \frac{\alpha G(N_2)}{2}\right)$$

 H_2 Structure H_2 Dissociation

 H_2 Formation

 H_2 and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 H_2 Without dust

Conclusion

Back to:

$$N_1(N_2) = \frac{1}{\sigma_g} \log \left(1 + \frac{k_D^0 \sigma_g}{R_f n_{\rm H}} \int_0^{N_2} f(N) \exp \left(-2\sigma_g N \right) \, dN \right)$$

We set:

$$\alpha = \frac{2 k_D^0}{R_f n_{\rm H}}; \quad G(N_2) = \sigma_g \int_0^{N_2} f(N) \exp(-2\sigma_g N) \, dN$$
$$N_1(N_2) = \frac{1}{\sigma_g} \log\left(1 + \frac{\alpha G(N_2)}{2}\right)$$

α = n₁/n₂ in free space (typically: α ~ 210⁴)
 G: Average H₂ self-shielding factor. (typically G ~ 510⁻⁵)

 H_2 Structure

 $\rm H_2$ Dissociation

 H_2 Formation

H₂ and metallicity N(H) from N(H2)

Analysis

Field

Metallicity

 $\rm H_2$ Without dust

Conclusion

Asymptotically:

$$N_{1,tot} = \frac{1}{\sigma_g} \log \left(1 + \frac{\alpha G}{2} \right) ; \quad G = \lim_{N_2 \to \infty} G(N_2)$$

Most Z' dependancies cancel, but one:

$$\alpha G \simeq 1.5 \frac{I_{UV}}{(n_{\rm H}/100 \,{\rm cm}^{-3})} \frac{1}{1 + \sqrt{2.64 \, Z'}}$$

 $\rm H_2$ Structure

 $\rm H_2$ Dissociation

 H_2 Formation

H₂ and metallicity N(H) from N(H2)

Analysis

Field Metallicity

 H_2 Without dust

Conclusion

Asymptotically:

$$N_{1,tot} = \frac{1}{\sigma_g} \log \left(1 + \frac{\alpha G}{2} \right) ; \quad G = \lim_{N_2 \to \infty} G(N_2)$$

Most Z' dependancies cancel, but one:

$$\alpha G \simeq 1.5 \frac{I_{UV}}{(n_{\rm H}/100 \,{\rm cm}^{-3})} \frac{1}{1 + \sqrt{2.64 \, Z'}}$$

 α G << 1: weak field limit: Absorption by H₂ lines and H₂-dust dominates.
 α G >> 1: strong field limit: Absorption by HI-dust dominates.

See complete discussion in Sternberg et al. (2014)

Weak to strong field

Conclusion

 H_2 Structure H_2 Dissociation

 H_2 Formation

H₂ and metallicity N(H) from N(H2) Analysis

Field

Metallicity

 ${\rm H}_2$ Without dust

Conclusion

For isotropic radiation field:

$$N_{1,tot} = \frac{\langle \mu \rangle}{\sigma_g} \log \left(1 + \frac{1}{\langle \mu \rangle} \frac{\alpha G}{4} \right)$$

 $< \varphi > \simeq 0.8, \text{ from fit to numerical models}$ $

<math>
 \frac{1}{\sigma_g} = \frac{5.3 \, 10^{20}}{Z'} \, \text{cm}^{-2}, \text{ for typical grain composition}$ $\alpha G \simeq 1.5 \, \frac{I_{UV}}{(n_H/100 \, \text{cm}^{-3})} \, \frac{1}{1 + \sqrt{2.64 \, Z'}}$ If balance between WNM and CNM, then $\frac{\alpha G}{2} \simeq 1.1$, so:

$$V_{1,tot} \simeq \frac{2.2 \, 10^{20}}{Z'} \, \mathrm{cm}^{-2}$$

Expansion

- H_2 Structure
- $\rm H_2$ Dissociation
- $\rm H_2$ Formation
- $\rm H_2$ and metallicity
- $\rm H_2$ Without dust
- Expansion
- Recombination
- Abundances
- Gas phase formation
- First stars
- Conclusion

Expansion

 H_2 Structure

 $\rm H_2$ Dissociation

 H_2 Formation

 H_2 and metallicity

 H_2 Without dust

Expansion

Recombination

Abundances

Gas phase formation

First stars

Conclusion

From: "The Dawn of Chemistry", D. Galli & F. Palla, ARA&A, 51, 163 (2013)

Expansion

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity

 H_2 Without dust

Expansion

Recombination

Abundances

Gas phase formation

First stars

Conclusion

From: "The Dawn of Chemistry", D. Galli & F. Palla, ARA&A, 51, 163 (2013)

Density (baryons):

$$n_b = 2.2 \, 10^{-7} \, (1+z)^3 \, \mathrm{cm}^{-3}$$

Recombination: $z \sim 1000 \Rightarrow n_b \sim 220 \,\mathrm{cm}^{-3}$ CMB, $T_0 = 2.725 \,\mathrm{K}$:

 $T_r = T_0 \ (1+z)$

Gas temperature:

$$\begin{cases} T_g \simeq T_r; & z > 300 \\ T_g \simeq 0.02 \ (1+z)^2; & z < 100 \end{cases}$$

Recombination

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 H_2 and metallicity

 H_2 Without dust

Expansion

Recombination

Abundances

Gas phase formation

First stars

Conclusion

Н	He	D	Li
0.924	0.076	2.3810^{-5}	4.0410^{-10}

Full chemistry (with isotopes): ~ 250 reactions and ~ 30 species.

 H_2 Structure

 H_2 Dissociation

 H_2 Formation

 ${\rm H}_2$ and metallicity

 H_2 Without dust

Expansion

Recombination

Abundances

Gas phase formation

First stars

Conclusion

Н	He	D	Li
0.924	0.076	2.3810^{-5}	4.0410^{-10}

- Full chemistry (with isotopes): ~ 250 reactions and ~ 30 species.
- Requires detailed balance of all main species (at least vibrational excitation for H_2 and H_2^+)

- $\rm H_2$ Structure
- $\rm H_2$ Dissociation
- H_2 Formation
- ${\rm H}_2$ and metallicity
- H_2 Without dust
- Expansion
- Recombination
- Abundances
- Gas phase formation
- First stars
- Conclusion

Н	He	D	Li
0.924	0.076	2.3810^{-5}	4.0410^{-10}

- Full chemistry (with isotopes): ~ 250 reactions and ~ 30 species.
- Requires detailed balance of all main species (at least vibrational excitation for H_2 and H_2^+)
 - Photo-destruction by CMB and non-thermal photons (e.g. $Ly\alpha$) is important.

- H_2 Structure
- H_2 Dissociation
- H_2 Formation
- ${\rm H}_2$ and metallicity
- H_2 Without dust
- Expansion
- Recombination
- Abundances
- Gas phase formation
- First stars
- Conclusion

Н	He	D	Li
0.924	0.076	2.3810^{-5}	4.0410^{-10}

- Full chemistry (with isotopes): ~ 250 reactions and ~ 30 species.
- Requires detailed balance of all main species (at least vibrational excitation for H₂ and H₂⁺)
- Photo-destruction by CMB and non-thermal photons (e.g. $Ly\alpha$) is important.
- But also new processes. E.g.

PHYSICAL REVIEW A 85, 043411 (2012)

Resonances in photoionization: Cross sections for vibrationally excited H₂

J. Zs. Mezei,^{1,2,*} I. F. Schneider,^{1,†} E. Roueff,³ and Ch. Jungen^{2,‡}

Gas phase formation

 $H_2 \text{ Structure}$ $H_2 \text{ Dissociation}$ $H_2 \text{ Formation}$

 H_2 and metallicity

 H_2 Without dust

Expansion

Recombination

Abundances

Gas phase formati<u>on</u>

First stars

Conclusion

 $H + H^+ \to H_2^+ + h\nu$ $H_2^+ + H \to H_2 + H^+$

 H^- formation:

$$\mathrm{H} + e^- \to \mathrm{H}^- + h\nu$$

 $\mathrm{H}^- + \mathrm{H} \to \mathrm{H}_2 + e^-$

Gas phase formation

Gas phase formation

H2StructureH2DissociationH2FormationH2and metallicity

 $\rm H_2$ Without dust

Expansion

Recombination

Abundances

Gas phase formation

First stars

Conclusion

3 body reactions (in collapsing clouds above $10^9 \,\mathrm{cm}^{-3}$): H + H + H \rightarrow H₂ + H H + H + H₂ \rightarrow H₂ + H₂

Rates based on reverse reaction rate measurement (collisional dissociation)

First stars

H2StructureH2DissociationH2FormationH2and metallicityH2and metallicityH2Without dustExpansionRecombinationAbundancesGas phaseformationFirst starsConclusion

Bovino et al., 2014, A&A, 561, 13

 10^{-22} 10^{-21} 10^{-20} 10^{-19} 10^{-18} Vorticity Squared (cm⁻²) 320 400 480 560 640 720 800 880 960 Temperature (K)

Conclusion

 H_2 Structure

 H_2 Dissociation

 $\rm H_2$ Formation

 $\rm H_2$ and metallicity

 $\rm H_2$ Without dust

Conclusion

■ There is no conclusion!

Conclusion

- H_2 Structure H_2 Dissociation
- H_2 Formation
- H_2 and metallicity
- $\rm H_2$ Without dust
- Conclusion

- There is no conclusion!
- Everywhere a huge amount of work is needed:
 - Theoretical
 - Experimental
 - Models
 - Observations

Conclusion

- H_2 Structure H_2 Dissociation
- H_2 Formation
- $\rm H_2$ and metallicity
- $\rm H_2$ Without dust
- Conclusion

- There is no conclusion!
- Everywhere a huge amount of work is needed:
 - Theoretical
 - Experimental
 - Models
 - Observations
- Three papers:
 - Bron, E. et al., 2014, A&A, 569, 100
 - Sternberg, A., Le Petit, F. et al., 2014, ApJ, 790, 10
 - Galli, D., Palla, F., 2013, ARA&A, 51, 163