Self-consistent modelling of dust growth from the diffuse to dense ISM

Melanie Köhler, Nathalie Ysard, Anthony Jones IAS, Orsay, France

Planck Collaboration: All-sky model of thermal dust emission, 2014

Dust in the denser ISM

Planck Collaboration, XXIII: The first all-sky survey of Galactic cold clumps. 2011

Dust in the denser ISM

Planck Collaboration, XXIII: The first all-sky survey of Galactic cold clumps. 2011

Why?

- Radiative transfer effects
- Fitting procedure
- Calibration, PSF
- Changing dust properties

Dust modelling

- Derive dust optical properties
 - * Material composition
 - * Grain shape and structure
 - * Size distribution

Mie (BHMIE, BHCOAT, Bohren & Huffman 1983)

DDA (Draine 1988, Draine & Flatau 2010)

- Derive SED and extinction
 - * Radiation field
 - * Geometry
 - Density distribution

DustEM (Compiegne et al. 2011)

CRT radiative transfer code (Juvela 2005, Ysard et al. 2012)

Compare directly to observations or derive β and T

Modified black body: Wavelength range, fitting procedure

Dust modelling

Derive dust optical properties

- Material composition
- * Grain shape and structure
- Size distribution

Dust model with realistic dust grains

- Dust evolution: changes dust properties and size distribution
- Mie (BHMIE, BHCOAT, Bohren & Huffman 1983)

DDA (Draine 1988, Draine & Flatau 2010)

- * Derive SED and extinction
 - * Radiation field
 - * Geometry
 - Density distribution

DustEM (Compiegne et al. 2011)

CRT radiative transfer code (Juvela 2005, Ysard et al. 2012)

Compare directly to observations or derive $\boldsymbol{\beta}$ and T

Modified black body: Wavelength range, fitting procedure

Diffuse ISM dust model with **realistic dust materials** (Jones et al. 2013, Köhler et al. 2014)

VSGs of aromatic-rich amorphous carbon (<20 nm)

VSGs and BGs of aliphatic-rich amorphous carbon with mantle of aromatic-rich amorphous carbon (>20 nm)

BGs of amorphous silicate with Fe/FeS nano-inclusions with mantle of aromatic-rich amorphous carbon

Optical constants:

am. silicate:	Scott & Duley 1996
inclusions:	Fe: Ordal et al. 1985,1988
	FeS: Pollack et al. 1994

am. carbon: Jones et al. 2012

Talk by Lapo Fanciullo Poster by Nathalie Ysard

Accretion

aliphatic-rich am. carbon aromatic-rich am. carbon aliphatic-rich am. carbon

aliphatic-rich am. carbon aromatic-rich am. carbon am. silicate + Fe inclusions

Accretion & Coagulation of VSGs and BGs

Accretion & Coagulation of VSGs and BGs & Accretion of ice mantles

Köhler et al., (in prep.)

DustEM + CRT

Summary

- ☆ Dust in the diffuse ISM
 - * Individual small and large grains
 - * Core-mantle grains
 - rightarrow β = 1.5, T_{color} = 20.3 K, ε_{250µm} = 0.5 ⋅ 10⁻²⁵ cm²
- Dust in the denser ISM
 - Coagulation & Accretion: Aggregates with carbonaceous and ice mantles
 - Variations:

as observed in denser regions

- * decrease in T to 17 K
- increase in β to 1.9
- increase in $\epsilon_{250 \text{ um}}$ by a factor of up to 3.5, with ice mantle up to 7

in good agreement with observations

of the diffuse ISM

in the ISM