

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Water formation through O₂+D pathway on cold silicate, graphite and amorphous water surfaces of interstellar interest

Henda Chaabouni

LERMA-LAMAp, Université de Cergy-Pontoise, FRANCE UMR 8112 du CNRS, Observatoire de Paris

Background

Water in the ISM

Water is detected in the ISM and outside of our Solar System as Gas, and Ice.

Previous studies

Gas-surface chemistry of water formation in the ISM

H + O	$\rightarrow \text{OH}$

 $H + OH \rightarrow H_2O$

Dulieu et al A&A (2010) Jing et al, APJL (2013) $\begin{array}{rcl} \mathsf{H} + \mathsf{O}_2 & \rightarrow & \mathsf{HO}_2 \\ \\ \mathsf{H} + \mathsf{HO}_2 & \rightarrow & \mathsf{H}_2\mathsf{O}_2 \\ \\ \mathsf{H} + \mathsf{H}_2\mathsf{O}_2 & \rightarrow & \mathsf{H}_2\mathsf{O} + \mathsf{OH} \\ \\ \\ \mathsf{H} + \mathsf{OH} & \rightarrow & \mathsf{H}_2\mathsf{O} \end{array}$

Miyauchi et al. Chem.Phys.Lett (2008) Ioppolo et al. APJ (2007), PCCP (2010) $\begin{array}{ll} \mathsf{H} + \mathsf{O}_{3} & \rightarrow \mathsf{O}_{2} + \mathsf{O}\mathsf{H} \\ \mathsf{H} + \mathsf{O}_{2} & \rightarrow \mathsf{H}\mathsf{O}_{2} \\ \mathsf{H} + \mathsf{H}\mathsf{O}_{2} & \rightarrow \mathsf{H}_{2}\mathsf{O}_{2} \\ \mathsf{H} + \mathsf{H}_{2}\mathsf{O}_{2} & \rightarrow \mathsf{H}_{2}\mathsf{O} + \mathsf{O}\mathsf{H} \\ \mathsf{H} + \mathsf{O}\mathsf{H} & \rightarrow \mathsf{H}_{2}\mathsf{O} \\ \mathsf{H}_{2} + \mathsf{O}\mathsf{H} & \rightarrow \mathsf{H}_{2}\mathsf{O} + \mathsf{H} \end{array}$

Mokrane et al APJL(2009) Romanzin et al , JCP (2011)

Thick film of O₂ (10-30 layers) at 10 K

Efficient formation of H₂O and H₂O₂ in the Multi-layer regime

$H_2O_2 > H_2O$

 $\rm H + HO_2 \rightarrow OH+OH \rightarrow H_2O_2$

Cuppen et al. PCCP (2010)

Project

$O_2 + D$ in the sub monolayer regime

(~100 nm) amorphous Olivine (Mg_{1,8}Fe_{0,2}SiO₄)

HOPG slab Highly Ordered Pyrolytic Graphite

10-20 ML film Amorphous Solid Water ices (H₂O vapor deposition)

Experiments FORMOLISM setup (LERMA, Cergy) Qudrupole mass spectrometer QMS (MCT) (Gas phase detection) detector **TPD** Temperature Programmed Desorption Sample (siliacte, graphite, water) Surface: 10 K Heating rate: $\beta = 0.04$ K/s $T = 10 \text{ K} + \beta t$ humana Cryocooler Surface: 10 K to 220 K 5 K- 360 K • UHV chamber **DED** During Exposure Desorption 10⁻¹¹ mbat Surface: 10 K **Triply differentially** No a pumped beam-lines FT-IR **Spectrometer Bruker Tensor 27 Micro-wave discharge**

2.45 GHz, 200 W

Dissociation D₂ (70%)

000

Colloque PCMI- AstroRennes 2014 -October 27-30 th 2014

Reflection Absorption Infra-Red Spectroscopy RAIRS

(Insitu Solid phase detection)

(4000- 600) cm⁻¹

RESULT 1: Water formation on Silicate surface

Successive deposition of O_2 and D atoms (0.2 ML) O_2 + 4 min D-atoms Low surface coverage

Colloque PCMI- AstroRennes 2014 -October 27-30 th 2014

$$D_2O > D_2O_2$$

Sub-monolayer regime

Chaabouni et al. J. Chem. Phys (2012)

RESULT 2: Effect of the substrate on O₂ +D

Colloque PCMI- AstroRennes 2014 -October 27-30 th 2014

Chaabouni et al. J. Chem. Phys (2012)

RESULT 2: Effect of the substrate on O₂ +D

RESULT 3: Chemical desorption

DED

Monitoring with the QMS the species desorbing into the gas phase during the exposure of D-atoms on $1 \text{ ML} (O_2)$ ice at 10 K.

Non thermal desorption of D_2O upon formation on the surface at 10 K

Chemical desorption of D₂O

Reaction routes for water formation

Kinetic O₂+D reaction on Silicate

$$O_{2} + D \xrightarrow{k} O_{2}D$$

$$O_{2}D + D \xrightarrow{k} OD + OD \qquad \alpha = 0,7$$

$$\xrightarrow{k} D_{2}O_{2} \qquad 1-\alpha = 0,3$$

$$D_{2}O_{2} + D \xrightarrow{k} D_{2}O_{(\text{solid})} + OD$$

$$OD + D \xrightarrow{k} D_{2}O_{(\text{solid})}$$

Modeling

Rate constante of reactions without Barrierk = 1Rate constant of reaction with a Barrier $k_1 = 0.09$

Branching ratio of the reaction

α=0,7 Cd= 80 %

Chemical desorption rate of D₂O

Colloque PCMI- AstroRennes 2014 -October 27-30 th 2014

Conclusions

The formation of water through O_2 +D is efficient in the sub-monolayer regime.

> The formation yield of D_2O water ice depends on dust grain surfaces.

SILICATE and GRAPHITE

$$O_2 + D \longrightarrow DO_2 + D \longrightarrow + D_2O \quad (gas)$$
$$OD + D \longrightarrow D_2O \quad (gas)$$
$$OD + D \longrightarrow D_2O$$

The heat of the exothermic reaction desorbe water into the gas phase High chemical desorption rate (~ 80 %)

WATER ICE

 $O_2 + D \longrightarrow DO_2 + D \longrightarrow OD + OD \longrightarrow D_2O_2 \xrightarrow{D} D_2O \text{ (solid)} + OD$

WATER ICE dissipate the excess energy released from exothermic reactions chemical desorption rate (~ 40 %).

<u>Astrophysical implications</u>: The chemical desorption of water has an impact on the gas phase composition of astrophysical environment, and can affect Stars and Planets formation.

Cergy, France

LERMA-LAMAp Laboratory

Italy

Dipartimento di Fisica ed Astronomia Università degli Studi di Catania

François Dulieu Marco Minissale Emanuele Congiu Saoud Baouche Giulio Manicò Mario Accolla