The JWST project: Applications to PDRs or shocks

Alain Abergel¹, Pierre Guillard² & Emilie Habart¹

1: IAS, Université Paris-Sud/CNRS, 2: IAP UPMC/CNRS

The JWST The 4 main instruments PDRs Shocks Conclusions

1

JWST's 4 IR instruments

Four instruments mounted on the Integrated Science Instrument Module (ISIM)

NASA

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Field of View Layout

JWST photometric sensitivity

28 (NIRCAM) + 10 (MIRI) + 7 (NIRISS) = 45 filters !

Angular resolution: 0.1-1"

JWST spectroscopic sensitivity

The 4 instruments: NIRSPEC, MIRI, NIRISS, NIRCAM, with a lot of capabilities ...

Instrument	Туре	Wavelength (microns)	Spectral resolution	Field of view
NIRISS	slitless	1.0-2.5	~150	2.2′ x 2.2′
NIRCam	slitless	2.4-5.0	~2000	2.2' x 2.2' (TBC)
NIRSpec	MOS	0.6-5.0	100/1000/2700	9 square arcmin.
NIRSpec	IFU	0.6-5.0	100/1000/2700	3″ x 3″
MIRI	IFU	5.0-28.8	2000-3500	>3" x >3.9"
NIRSpec	SLIT	0.6-5.0	100/1000/2700	Single object
MIRI	SLIT	5.0-10.0	60-140	Single object
NIRISS	Aperture	0.6-5.0	100/1000/2700	Single object
NIRSpec	Aperture	0.6-2.5	700	Single object

Instrument	Туре	Wavelength (microns)	Spectral resolution	Field of view
NIRISS	slitless			
NIRCam	slitless			
NIRSpec	MOS			÷
NIRSpec	IFU			
MIRI	IFU			
NIRSpec	SLIT			÷
MIRI	SLIT			
NIRISS	Aperture	 A spectrum for ever Not restricted 	y source in the field of view.	
NIRSpec	Aperture	0.6-2.5	700	Single object

Instrument	Туре	Wave (mic	Using 4	Sporthal arrays o	of 365x	Field of 171	iew
NIRISS	slitless		micro-s	hutters o	each, p	rovided	2′ x 2.2′
NIRCam	slitless		by NAS	A GSFC.	This gives	us a total of	2' (TBC)
NIRSpec	MOS		•	e e e e e e e e e e e e e e e e e e e	almost 25	0 000 small	arcmin.
NIRSpec	IFU			i	apertures ndividual	that can be ly opened/	3" x 3"
MIRI	IFU				closed	, , , , , , , , , , , , , , , , , , , ,	>3.9"
NIRSpec	SLIT						e object
MIRI	SLIT		3				e object
NIRISS	Aperture		MEMS devi	ce - 105x20)6		e object
NIRSpec	Aperture		0.6-2.5		700	Singl	e object

Instrument	Туре	Wavelength • MIRI IFU	Spectral	Field of view
		Covering	the 4.9-28.8 micron range	continuously in 3 exposures!
NIRISS	slitless	Mapping s	spectrally your objects over	a field of view larger than
NIRCam	slitless	3″ x 3.9″.		
		←	10 arcseconds dispe	channel's field of view is sliced,
NIRSpec	MOS	Channel 1		
NIRSpec	IFU	(4.9 - 7.7 μm)		
MIRI	IFU	Channel 2 (7.4 - 11.8 μm)		
NIRSpec	SLIT	Channel 3 (11.4 - 18.2 µm)		
MIRI	SLIT	Channel 4		
NIRISS	Aperture	(17.5 - 28.8 μm)	198 BERLEY	Wavelength/Velocity
NIRSpec	Aperture	0.6-2.5	700	Single object

Instrument	Туре	Wavelength (microns)	Spectral resolution	Field of view	
NIRISS	slitless	1.0-2.5	~150	2.2′ x 2.2′	
NIRCam	slitless	2.4-5.0 ~2000		2.2' x 2.2' (TBC)	
NIRSpec	MOS	0.6-5.0	100/1000/2700	9 square arcmin.	
NIRSpec	IFU	0.6-5.0	100/1000/2700	3″ x 3″	
MIRI	IFU	5.0-28.8	2000-3500	>3" x >3.9"	
NIRSpec	SLIT	0.6-5.0	100/1000/2700	Single object	
MIRI	SLIT	5.0-10.0	60-140	Single object	
NIRISS	Aperture	0.6-5.0	100/1000/2700	Single object	
NIRSpec	Aperture	0.6-2.5	700	Single object	

NIRCAM

- Univ. of Arizona plus Lockheed ATC
- 0.6-5 μm range
- short (0.6-2.3 μm) and long (2.4-5 μm) arms, same area observable simultaneously
 - 2.2 x 4.4 arcmin total field of view
 - 16 and 4 Mega pixels detectors operating at 80 K and 42 K
 - Diffraction limited at 2 and 4 μm
 - Pixel scale : 0.032" and 0.064"
 - 28 broad, intermediate, and narrow band filters (R = 4, 10, 100)...
 - Coronographic capability (moving focal plane masks/Lyot stop in the pupil wheel)
 - Also a grism in the long channel (2.4-5 μ m slitless spectroscopy, R = 2000)
 - Use to phase the 18 segment primary mirror

NIRCam Filters & Sensitivity

Wavelengths in μm , Sensitivity in nJy, 10σ in 10000 s

Short Wavelength Module

Long Wavelength Module

Name	Center	Bandpass	Sensitivity	Use	Name	Center	Bandpass	Sensitivity	Use
F150W2*	1.5	1		DHS Blocking	F322W2	3.22	1.61		Background Min.
F070W	0.7	0.175	20.9	General purpose	F277W	2.77	0.6925	12.3	General purpose
F090W	0.9	0.225	14.3	General purpose	F356W	3.56	0.89	13.8	General purpose
F115W	1.15	0.2875	11.8	General purpose	F444W	4.44	1.11	24.5	General purpose
F150W	1.5	0.375	11.2	General purpose	F250M	2.5	0.1667	38.1	CH ₄
F200W	2	0.5	10.4	General purpose	F300M	3	0.3	26.8	H ₂ O ice
F140M	1.4	0.14	28.1	Cool *s, H ₂ O steam	F335M	3.35	0.335	28	PAH
F162M	1.62	0.151	26.6	Cool *s, off-band	F360M	3.6	0.36	29.7	BDs, planets
F182M	1.82	0.221	25.5	Cool *s, H ₂ O steam	F410M	4.1	0.41	36.7	BDs, planets
F210M	2.1	0.21	25.7	CH ₄	F430M	4.3	0.2	71.5	CO ₂
F164N	1.644	0.0164	268	[Fell]	F460M	4.6	0.2	55.7	со
F187N	1.8756	0.0188	267	Ρα	F480M	4.8	0.4	72.6	BDs, planets
F212N	2.1218	0.0212	265	H ₂	F323N	3.235	0.0324	240	H ₂
F225N	2.2477	0.0225	232	H ₂	F405N	4.0523	0.0405	260	Brα
					F418N	4.1813	0.0418	271	H ₂
					F466N	4.656	0.0466	334	со
					F470N	4.705	0.0471	341	H ₂

- Provided by ESA, built by Airbus Defense and Space in Germany
- 0.7-5 μm range, 3.4' x 3.6' FOV (3' x 3' for Multi-object spectroscopy)
- 730 X 342 Micro-Shutter Assembly (MSA) for multiple apertures
 - for compact, faint and numerous (>100) sources
- 3 fixed slits : 0.1" x 1.9", 0.2" x 3.3", 0.4" x 3.8"
- Integral Field Unit (IFU)
 - 3" x 3", with 30 image slices,
 - each 0.1" (dispersion) x 3" (spatial)
- 3 spectral resolutions:
 - 100 (0.7 5.0 µm single prism)
 - 1000 (1.0 5.0 µm 3 gratings)
 - 2700 (1.0 5.0 µm 3 gratings)
- 2 x 4 Mega pixels HgCdTe arrays at 30-40 K

Near-InfraRed Imager and Slitless Spectrograph (NIRISS)

- Provided by the Canadian Space Agency and designed, built and tested by COM DEV International.
- 4 observing Modes:
 - Wide-field grism spectroscopy, 1 2.5 μ m at R ~ 150
 - Single-object grism spectroscopy, 0.6 3.0 μm at R ~ 700
 - Aperture-masking interferometry (exoplanet detection)
 - Broad-band imaging, 1.0 5.0 μm, 2.2' x 2.2', 7 filters (spare model of NIRCAM filters)
- HgCdTe matrix with 2048 × 2048 pixels

MIRI

- Developed by the US and Europe (50%-50%)
- European consortium with 10 countries. ESA supervision.

- 9 photometric bands from 5 to 28 $\mu m,$ R ~ 5, Field of View: 74" X 113"
- Coronography : 3 four-quadrant phase masks at 10.65, 11.4, & 15.5 μm and Lyot mask at 23 μm
- Low-Res Spectroscopy, R ~ 100 at 7.5 $\mu m,$ 5 to ~ 14 $\mu m,$ slit 0.6" X 5.5"
- 2. MRS: Mid Resolution Spectroscopy
 - Netherland: Spectrometer Main Optic
- R ~ 2070 3730, 4.9 to 28.8 $\mu m,$ IFU with FOVs of 3.7" to 7.7"

1+2 = 3 1024 X 1024 SiAs detector array (US). Operating temperature : 7 K (cryocooller)

RAL

The MIRI Focal Planes (Entrance + Detector)

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

PDRs

Laboratories to study radiation-dominated processes

And in response all PDRS tracers (dust, molecular and atomic emissions)... A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Photodissociation Region

H,

 $T_{m} = 10 - 10^2 K$

0/0.

C*/C/CO CO

H/H₂

н

C

0

Tos>Tor

 $T_{oes} = 10^2 - 10^3 K$

UV Flux

UV Flux

UV Flux

H⁺

:H*/H

Hot Star(s) or ISRF

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Dust Emission spectrum

Diffuse ISM SED from DUSTEM Complegne et al. (2011) I_{D}^{-10} I_{D}^{-10} I_{D}^{-10

• "Big Grains" : Large Amorphous Silicate (aSil) and Carbon (LamC)

 Very small dust particles : "PAHs" & "Very Small Grains" (Small Amorphous Carbon) Play a major role : Heating, Formation of molecules (H₂, ...), Extinction Evolution (properties, abundance, size distribution, ...) in response to local conditions as illustrated in PDRs...

Maps of the emission of very small dust particles in PDRs

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Maps of the emission of very small dust particles in PDRs

ISOCAM/CVF or Spitzer/IRS spectroscopy: (Abergel et al. 2002, Compiegne et al. 2008, Habart et al 2005 Rapacioli et al. 2005, Berné et al. 2007, ...)

 Strong colour evolution at dense illuminated ridges (traced by H₂) which directly reveals evolution of the emitters at the opposite of Herschel maps...

Aromatic 5-8 μ m / Cont. at 15 μ m

Herschel map of Orion B

70 μm (blue), 160 μm (green) and 250 μm (red)

ESA/Herschel/PACS, SPIRE/N. Schneider, Ph. André, V. Könyves for the 'Gould Belt survey' Key Programme

The colour variations in the sub-mm are mainly due to variations of the dust temperature, due to variations of the local heating

Rho Oph molecular cloud mapped with Spitzer

Blue: 3.6 μm , green : 8 μm , red 24 μm

NASA/JPL-Caltech/Harvard-Smithsonian CfA

The colour variations in the IR reveals evolution of the emitters, due to the stochastic heating

Photo-processing of dust grains in PDR Decomposition of ISOCAM & Spitzer/IRS spectra

Using Blind Signal Separation (BSS) methods (Rapaciolli et al. 2005, Berné et al. 2007 & 2009, Joblin et al. 2008, Pilleri et al 2012), creation of spectral templates with at least three components :

used for the decomposition of the spectra for each pixels of the spectral cube...

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Photo-processing of dust grains in PDRs Maps of extracted components from Spitzer/IRS spectral cubes

Exemple in NGC 7023 (see the next talk and Pilleri et al 2012)

Going towards the stars, eVSGs followed by PAH⁰ and PAH⁺ are successively dominant Interpretation :

At the illuminated of PDRs, eVSGs destroyed by UV photons to produce free-flyer PAHs

But the angular resolution is limited, \sim 3.6 arcsec

The JWST has the angular resolution to resolve the transition regions.

Evolution of the charge state of PAHs : Example in the Horsehead

- PDR spectrum: PAH⁺ (UV photons and lack of free electrons)
- HII region: neutral PAH (strong 11.3 μm emission) due to moderate radiation field

The JWST has the sensitivity and the spatial resolution to see the transition between the dense shielded matter and the newly photo-ionised gas

Molecular Hydrogen

- Everywhere where dust shields it from UV photons (Av > 0.01–0.1 mag)
- Two key roles in ISM processes

 H_2 formed on grains initiates interstellar gas phase chemistry. One of the major contributors to the cooling of astrophysical media.

Excitation

Far UV pumping to excited electronic states Inelastic collisions to lower energy levels Internal energy due to H_2 formation on dust grains X-ray excitation

- J = 0-0 S(0) at 28.22 μm and J =0-0 S(1) at 17.03 μm generally thermalized Mass and temperature of the bulk of warm molecular gas
- Higher pure rotational lines probe the small fraction (< 1%) of photon- or shock-heated gas.

Excitation of H₂ in PDRs with Spitzer

- The first low rotational lines probe the bulk of the gas at moderate temperature
- Unexpected rotationally excited H_2 for limited ($G_0 < 10^4$) FUV incident radiation field compared to static equilibrium models (while OI and C+ lines observed with Herschel can be reproduced)
 - H₂ formation (see J. Le Bourlot and E. Bron presentations) ?
 - Local increased of the dust photoelectric heating rate ?
 - Additional heating sources (shocks, turbulence) ?
 - Out-of-equilibrium process (see P. Lesaffre presentation)?

Observation of H₂ in PDRs with Spitzer : Main limitation

• Limited angular resolution & sensitivity

All is done at the peak positions !

JWST: Follow the excitation within individual objects, G_0 decreasing down to 0 Spatially resolve the very small dust and line emission profiles,

Not only H_2 : [Ar II] 7.0, [Ne II] 12.8, [Ne III] 15.6, [S III] 18.7, [S I] 25.2 µm, HD, H_2O , H_3O^+ , CH_4 , C_2H_2 , HCN, OH, ...

The Horsehead Nebula (J & H bands)

A. Abergel, PCMI, Rennes 27-31 Octobre 2014

Proto-stellar outflows with H₂ rotational lines

Structure, physical state and kinematics of H₂ gas in galaxy collisions

Stephan's Quintet. V ~ 1000 km/s Image: Visible (Hubble) BLUE= warm H₂ (Spitzer IRS) mid-IR 0-0 S(1) 17 μ m Angular resolution ~ 5 arcsec Spectral resolution R ~ 600

34

Key aspects to be addressed with JWST: Is the H_2 gas fragmented at smaller scales? What are the warm H_2 kinematics? Link between kinematics (turbulence), physical structure and H_2 excitation \longrightarrow input for shock models

Appleton et al. 2006, Guillard et al. 2009, 2012b

Conclusions

Unique capabilities : Angular resolution, spectral resolution, sensitivity

but slow : 90 deg/hr slew rate, many timing and scheduling constraints, designed for detailed study of a few objects,

- Lifetime : 5,5 years. Limited by the amount of fuel for maintening the orbit. 10 years possible.
- JWST is on track for a launch late 2018.
- More than 80% of available observing time for submitted proposals
- More than 15% of the total observing time to ESA member states applicants (as HST)
- Cycle 1 call for proposal : late 2017 (then 1 call each year)
- Cool down and commissioning: Launch + 6 months
- Early release/first look data delivered to the community
- Cycle 1 observations from mid-2019
- Meeting « Exploring the Universe with JWST » at ESTEC (12-16 October 2015)
- Centre d'expertise français for MIRI in discussion (SaP, IAS, LESIA)