

High spatial resolution observations of key hydrocarbon species in the NGC 7023 PDR

Paolo Pilleri Christine Joblin

IRAP & Université de Toulouse paolo.pilleri@irap.omp.eu christine.joblin@irap.omp.eu

A. Fuente J. Pety M. Gerin F. Boulanger T. Onaka F. Le Petit

Financial support: CNES post-doctoral fellowship

Photo-dissociation regions

Photon-dominated region

[Tielens & Hollenbach ApJ 1985]

Introduction

Small hydrocarbons in PDRs Evolutionary scenario of PAHs

The case of a mild-UV irradiated PDR: NGC 7023

The variations of the near-IR features seen by AKARI The small hydrocarbon emission: CCH and $c-C_3H_2$ The evolution of the AIB carriers and small hydrocarbons

Conclusions & perspectives

The abundance of small hydrocarbons in PDRs

The abundances of small hydrocarbons (CCH, c-C₃H₂, C₄H) in low- and mild-UV PDRs are higher than predicted from gas-phase models by 1 or 2 orders of magnitudes

Teyssier et al., 2004; Fossé et al., 2000; Pety et al., 2005, 2013

The spatial relation between the emission of small hydrocarbons and aromatic infrared bands suggests that the evolution of their carriers (PAHs) is linked.

Photo-destruction of PAHs can lead to hydrocarbon formation?

Observations of NGC 7023 NW

A spatially resolved source: NGC 7023 NW, d = 430 pc

AKARI ~ 3" λ=2.5-5 μm A ~ 3.6" Spitzer λ=-5.5-15 µm IRAM-PdBI A ~ 4.5" $\lambda = -3mm$

Colloque PCMI - Astrorennes 2014

Paolo Pilleri

The evolution of the mid-IR AIB carriers

The mid-IR spectra of PDRs show variation in the shape and intensity of the AIBs, that indicate an evolution of the AIB carriers

Rapacioli et al., 2005, Berné et al., 2007

Gas-phase PAHs are produced by destruction of eVSGs by UV photons *Pilleri et al.*, 2012

Is there a link with the production of small hydrocarbons?

Evolution of the 3.4 μ m band relative to the 3.3 μ m band with the physical conditions (G₀)

The variation of the near-IR spectral features also indicates an evolution of the AIB carriers Pilleri et al, to be submitted

Paolo Pilleri

Colloque PCMI - Astrorennes 2014

Spatial distribution of the 3.3 μ m and 3.4 μ m bands

Both emissions peak in the filamentary region

Pilleri et al., to be submitted

No emission of 3.3 μm or 3.4 μm band deeper in the cloud (no UV photons)

The 3.3 μ m extends in the low-density, ionized cavity: partly due to ionized PAHs

Absolute intensity comparison is biased by column density and G_0

The ratio of the 3.4/3.3 bands as tracer of chemical evolution

Colloque PCMI - Astrorennes 2014

Paolo Pilleri

The evolution of the I_{3.4}/I_{3.3} ratio vs G₀

The evolution of the $I_{3.4}/I_{3.3}$ ratio is consistent with a photo-chemical model involving aliphatic methyl and methylene side-groups on PAHs

A link with gas-phase hydrocarbons?

PdBI observations of CCH and c-C₃H₂ in NGC 7023 NW PI: P. Pilleri

faces the difficulty of the detailed geometry and physical conditions to derive molecular abundances

> Koheler et al., 2014 Joblin et al., in prep.

needs to include the photo-products of PAHs and eVSGs in chemical networks

Pilleri et al., in prep.

The question of the over-abundance of small hydrocarbons in PDRs needs a detailed study of the photo-processing of the AIB carriers.

Observations reveal a relation between the destruction of eVSG and the production of aliphatic C-H bonds on PAHs and of small hydrocarbons.

The main caveat concerns our poor knowledge on the properties of eVSGs.

Systematic study

3D survey of small hydrocarbons in PDRs PI: P. Pilleri

Test the dependence of the hydrocarbons abundance from G₀ Pilleri et al., in prep.

Perspectives

Constraining the physical conditions and the geometry of NGC 7023 NW

High resolution observations of atomic/molecular lines

Complete census of small hydrocarbons in the PDR Spectral survey of NGC 7023 NW at 3mm and 2mm C_2H , c/I- C_3H_2 , I- C_3H^+ , c/I- C_3H , C_4H , ...

Application to other galactic PDRs and beyond

Galactic PDRs: 3D mapping of galactic PDRs (Spitzer, IRAM, AKARI) Galactic (proto-)planetary nebulae, proto-planetary disks (ALMA) External galaxies

Modeling

Extension of chemical models to include hydrocarbon production