

Chemistry of ice: formation of complex molecules and photodesorption

Patrice Theulé

Physics of Ionic and Molecular Interactions laboratory Aix-Marseille University, CNRS UMR 7345, France

PCMI AstroRennes 2014 conference October 27-30 th 2014

The life cycle of the interstellar matter

The life cycle of the interstellar matter

Ice chemistry

Ice chemistry

Accretion of atoms and simple molecules

S_H(10K) ≈95%

Ice chemistry

early and late prestellar ice formation

surface reactivity involving atoms (C, N, O, H) or small molecules

The interstellar ice CNO budget

C budget

 $CO, CO_2, OCN^-, H_2CO, CH_3OH, HCOO^-, CH_4$

8-15 % wrt C_{total}

14-27 % wrt C_{volatile}

O budget

H₂O, CO, CO₂, OCN⁻, H₂CO, CH₃OH, HCOO⁻ 12-16 % wrt O_{total} 25-34 % wrt O_{volatile}

N budget

NH₃, NH₄⁺, OCN⁻, ?

10-12 % wrt N_{total}

10-12 % wrt N_{volatile}

NGC 7538 ISO spectrum

+ complex organic molecules (COMs)
 in low abundances (< 0.1 % wrto H₂O)

The zeroth generation molecules

С

The formation of CH_4 $C \xrightarrow{+H} CH_4$ The formation of carbon chains $C_2 \xrightarrow{+H} C_2H_2 \rightarrow C_2H_4 \rightarrow C_2H_6$

Hiraoka et al., ApJ 1998

Hiraoka et al., ApJ 1999, ApJ 2000

Ν

The formation of NH_3 N $\xrightarrow{+H}{\rightarrow} NH_3$

Hiraoka et al., ApJ 1995

0

The formation of H₂O

 $O \xrightarrow{+H} H_2O$ $O_2 \xrightarrow{+H} H_2O$ $O_3 \xrightarrow{+H} H_2O$ $O_3 \xrightarrow{+2H} OH + OH \xrightarrow{+2H} 2O \xrightarrow{+2H} 2O$ $O + H_2 \xrightarrow{+H} 2O$ $OH + H_2 \xrightarrow{+H} 2O + H$

The formation of O_2 $0 + 0 \rightarrow O_2$ E < 1.25 kJ.mol⁻¹ The formation of O_3 $0 + O_2 \rightarrow O_3$ E < 1.25 kJ.mol⁻¹ Hiraoka et al., ApJ 1998, Dulieu et al., A&A 2010, Jing et al. ApJL, 2011

Ioppolo et al., ApJ 2008, Miyauchi CPL, 2008 Romanzin JCP 2011, Mokrane ApJL, 2009 Oba et al., PCCP 2011 Lamberts et al., arXiv 2014 Oba et al., ApJ 2012, He and Vidali ApJ 2014

Minissale et al., J. Chem. Phys 2014

Minissale et al., J. Chem. Phys 2014

C/O

The formation of CO_2 $CO + O \rightarrow CO_2$ E = 5.2 1.5 kJ.mol^{-1} Roser et al. ApJ 2001, Madzunkov PRA 2006,
Minissale et al., A&A 2013 $CO + OH \rightarrow CO_2 + H$ Ioppolo et al., MNRAS 2011 a

The formation of more complex molecules

CO + OH →HCOOH	Ioppolo et al., MNRAS 2011 b
$CO_2 \xrightarrow{+H}{\rightarrow} nothing$	Bisschop et al., A&A 2007
HCOOH \rightarrow nothing	Bisschop et al., A&A 2007
^{+ H} CH ₃ CHO \rightarrow C ₂ H ₅ OH, CH ₄ , H ₂ CO, CH ₃ OH	Bisschop et al., A&A 2007

N/O

C/N

HCN + H \rightarrow CH2 NHTheule et al., A&A, 2011CH2NH + H + H \rightarrow CH3 NH2Theule et al., A&A, 2011CN + H2 \rightarrow HCNBorget et al., to be submitted

hydrogenation by <u>molecular</u> hydrog	gen
$OH + H_2 \rightarrow H_2O + H$	Oba et al., ApJ 2012
$O + H_2 \rightarrow H_2O$	Lamberts et al., arXiv 2014
$CN + H_2 \rightarrow HCN$	Borget et al., to be submitted

activation energy vs abundance of the H_2 reactant (H/ $H_2 \approx 10^{-4}$)?

effect of an H₂ coating on grain surface and the radical life time ?

The formation of COMs

the protostellar stage

Purely thermal reactivity

photons flux

Purely thermal reactivity

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	НСООН	HNCO	•••
H ₂ O											
СО											
CO ₂											
NH ₃						\rightarrow	?				
CH ₄											
OCS											
H ₂ CO											
CH₃OH											
НСООН											
HNCO											
•••											

mass spectrum

Purely thermal reactivity

Thermal reactivity in the ice mantle

G0 molecules	H ₂ O	СО	CO2	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HNCO	
H ₂ O							HOCH₂OH			H ₃ O⁺OCN⁻	
СО											
CO2				NH ₂ COOH							
NH ₃			NH ₂ COOH				NH ₂ CH ₂ OH		NH₄⁺ HCOO⁻	NH ₄ ⁺OCN⁻	
CH ₄											
OCS											
H ₂ CO	HOCH ₂ OH			NH ₂ CH ₂ OH			POM				
CH₃OH											
нсоон				NH₄⁺ HCOO⁻							
HNCO	H₃O⁺OCN			NH₄⁺OCN⁻							

Purely thermal reactivity

a solid-state chemical sub-network of purely thermal reactions

reac	tants			pr	oduct	8			ν_0 , E ₀ , [T interval, K]	references
		acid	base r	reactions						
generation 0		generation 0		generation 1						
H ₂ O	+	HNCO	\rightarrow	$H_3 O^+ OCN^-$					(3 10 ⁸ , 26)[110K-130K]	Raunier et al. 2004; Theule et al. 2011a
NH ₃	+	HCOOH	\rightarrow	NH ⁺ HCOO						Schutte et al. (1999)
NHa	+	HNCO	-+	NH, OCN-					(4 10 ⁻³ , 0.4) [8K-40K]	Demyk et al. (1998); Raunier et al. (2003)
										van Brockhuizen et al. 2004 : Mispelaer et al. 2012
NH ₃	+	HCN	-+	NH ⁺ ₄ CN					(1.6 10 ⁻² , 2.7)[60K-105K]	Clutter & Thompson 1969 ; Noble et al. in prep.
generation 1		generation 0		generation 2						
NH ₂ COOH	+	NH ₃	\rightarrow	$NH_4^+ NH_2 COO^-$						Bossa et al. (2008)
CH ₃ NHCOOH	+	CH ₃ NH ₂	-+	CH ₃ NH ⁺ ₃ CH ₃ NHCOO ⁻						Bossa et al. (2009)
		nucleo	philic	additions						
generation 0		generation 0		generation 1						
CO ₂	+	NH ₃	-+	NH ₂ COOH						Frasco (1964); Hisatsune (1984); Bossa et al. (2008)
CO ₂	+	CH ₃ NH ₂	\rightarrow	CH ₃ NHCOOH						Bossa et al. (2009
H ₂ CO	+	H ₂ O	\rightarrow	HOCH ₂ OH					2	Noble et al. [2012] a.
H ₂ CO	+	NH ₃	-+	NH ₂ CH ₂ OH					(5 10 ⁻² , 4.5)[80K-100K]	Bossa et al. (2009)
H ₂ CO	+	CH ₃ NH ₂	-+	CH ₃ NHCH ₂ OH					(2 10 ⁻² , 1.1)[30K-120K]	Vinogradoff et al. (2012 a)
CH ₃ CHO	+	NH ₃	\rightarrow	$NH_2 CH(CH_3)OH$					(7 10 ¹⁰ , 33)[115K-125K]	Duvernay et al. 2010
generation 1		generation 0		generation 2						
NH ⁺ ₄ CN	+	CH ₂ NH	\rightarrow	NH ₂ CH ₂ CN						Danger et al. (2011)
NH ⁺ CN	+	H ₂ CO	-+	HOCH ₂ CN	+	NH ₃			(2.8 10 ⁻¹ , 3.8)[50K-130K]	Danger et al. (2012)
		elimi	nation	reaction						
generation 1										
NH2CH2OH	+	HCOOH	-	CH ₂ =NH	+	H20	+	HCOOH		Vinogradoff et al. 2011, 2012 b.
NH2CH(CH3)OH	+	HCOOH	-	CH ₃ CH=NII	+	120	+	licooli		Vinogradon et al. 12012 a
CH3NIICH2OH	+	ncoon	-	$GH_2 = HGH_3$	+	n ₂ O	+	ncoon		vinogradoti et al. 2012 a

Purely thermal reactivity

Thermal condensation reactions

Reactants						Products			References
The formation of POM ^a									
H ₂ CO	+	H ₂ O			\rightarrow	HOCH ₂ OH			Noble et al. (2012)
H ₂ CO	+	HOCH ₂ OH			\rightarrow	HOCH ₂ OCH ₂ OH			Noble et al. (2012)
H ₂ CO	+	HOCH ₂ OCH ₂ OH			\rightarrow	HOCH ₂ OCH ₂ OCH ₂ OH			Noble et al. (2012)
H ₂ CO	+	HO-(CH ₂ -O) _{n=1} -H			\rightarrow	HO-(CH ₂ O) _n -H			Noble et al. (2012)
or									
H ₂ CO	+	NH ₄ ⁺ CN ⁻			\rightarrow	NCCH ₂ OH	+	NH ₃	Danger et al. (2012)
H ₂ CO	+	NCCH ₂ OH			\rightarrow	NCCH ₂ OCH ₂ OH			Danger et al. (2012)
H ₂ CO	+	NC-(CH2-O)n-1-H			\rightarrow	NC-(CH ₂ O) _n -H			Danger et al. (2012)
or									
H ₂ CO	+	NH4 ⁺ HCOO ⁻			\rightarrow	HCOOCH ₂ OH	+	NH ₃	Vinogradoff et al. (2012)
H ₂ CO	+	HCOOCH ₂ OH			\rightarrow	HCOOCH ₂ OCH ₂ OH			Vinogradoff et al. (2012)
H ₂ CO	+	HCOO-(CH2-O)n-1-			\rightarrow	HCOO-(CH ₂ O) _n -H			Vinogradoff et al. (2012)
		н							
The formation of PMI ^a									
CH ₂ NH	+	NH ₄ ⁺ CN ⁻			\rightarrow	NCCH ₂ NH ₂	+	NH ₃	Danger et al. (2011)
CH ₂ NH	+	NC(CH ₂ NH) _{n-1} H			\rightarrow	NC(CH ₂ NH) _n H			Danger et al. (2011)
or									
CH ₂ NH	+	NH₄ ⁺ HCOO [−]			\rightarrow	HCOOCH ₂ NH ₂	+	NH ₃	Vinogradoff et al. (2012)
CH ₂ NH	+	HCOO(CH2NH)n-1H			\rightarrow	HCOO(CH ₂ NH) _n H			Vinogradoff et al. (2012)
The formation of HMT ^b									
CH ₂ NH	+	HCOOH			\rightarrow	CH ₂ NH ₂ ⁺ HCOO ⁻			Vinogradoff et al. (2012)
CH ₂ NH ₂ ⁺ HCOO ⁻	+	CH ₂ NH	+	CH ₂ NH	\rightarrow	C ₂ N ₂ H ₂ H ⁺ HCOO ⁻			Vinogradoff et al. (2012)
C ₂ N ₂ H ₂ H ⁺ HCOO ⁻	+	C ₂ N ₂ H ₆ H ⁺ HCOO ⁻		0.1.2	\rightarrow	C ₄ H ₁₀ N ₄ (HMT)	+	2	Vinogradoff et al. (2012)
03.03.03.0		03.03.09.00000				00.12. 4 (11.1)		NH₄ ⁺ HCOO [−]	
The formation of 1 17b									
CH CHNH		нсоон				CH CHNIH +HCOO-			Vincered off at al
CH ₃ CHINH	-	нсоон			-	CH ₃ CHNH ₂ HCOO			(2012a)
CH-CHNH-+HCOO-	-	CHICHNIH	-	CH. CHNH		CH.N. (AAT)	-	нсоон	(2015a) Vinogradoff et al
ch3chikh2 heoo		ch ₃ chivii		ch ₃ cmon	_	C611513 (AAT)		neoon	(2013a)
									(2015a)
The formation of FMT ^b									
CH ₂ NCH ₃	+	HCOOH			\rightarrow	[CH ₂ NHCH ₃] ⁺ HCOO ⁻			Vinogradoff et al.
									(2013a)
[CH ₂ NHCH ₃] ⁺ HCOO ⁻	+	CH ₂ NCH ₃	+	CH ₂ NCH ₃	\rightarrow	$C_6H_{15}N_3$ (FMT)	+	HCOOH	Vinogradoff et al.
									(2013a)

diffusion limited reactivity

$$\frac{\partial n_A}{\partial t} - D(T) \times \nabla^2 n_A + k(T) \times n_A n_B = 0$$

next talk by Pierre Ghesquiere

The reaction rate constant k(T)

The diffusion coefficient D(T)

The isotopic H/D exchange

N. Watanabe, A. Kouchi/Progress in Surface Science 83 (2008) 439-489

what is the deuteration pathway?

How can we use the D/H ratio as a chemical clock ?

the deuteration of methanol in star-formation regions, the CH₂DOH / CH₃OD ratio

talk by Mathilde Faure

Ice chemistry

Photochemistry

✓ Formation of COMs from complex molecules irradiation

Bossa, J.B.; Duvernay, F.; Theule, P.; Borget, F.; d'Hendecourt, L.; Chiavassa, T. A&AS 2009

Photochemistry

✓ destruction of COMs (photodissociation) and photo equilibrium

talk by Jean-Baptiste Bossa

Ion induced chemistry

GANIL

heavy-ion beams to mimic solar and stellar winds or galactic cosmic-rays

ice analogues bombardment by ions C^{q+}, O^{q+}, Fe^{q+}, S^{q+}, Ni^{q+}, Zn^{q+}, with (q=1, 2, 3,...11) at kev- GeV

✓ destruction of molecules (dissociation cross-sections)

✓ production of molecules (production yields)

✓ sputtering yields (heavy ions induced desorption)

- Dissociation cross-section ~ electronic stopping power $^{3/2}$, de Barros et al. MNRAS 2014
- Heavy ions induced chemistry

Lv et al. A&A 2012, Andrade et al. MNRAS 2013, Mejia et al. MNRAS 2013, Bordalo et al. ApJ 2013, Ding et al. Icarus 2013, de Barros et al., MNRAS 2014, Lv et al., MNRAS 2014 Baratta and Palumbo et al., A&A 2014

- Ion bombardment products roughly similar to those by photons, protons or electrons, Munoz Caro et al., A&A 2014
- Compactification of the ice by ion bombardment Dartois A&A 2013

Electron induced chemistry

✓ chemical reactions

dissociative electron attachment AB + $e^- \rightarrow AB^-* \rightarrow A^- + B$

Formation of O₃ from 5 keV electron bombardment of solid oxygen Bhalamurugan et al., ApJ 2007, Bennet and Kaiser, ApJ 2007

Electron bombardment of ice analogues and formation of COMs Brant et al. ApJ 2014, Zhou et al., ApJ 2014, Surajit and Kaiser ApJ 2013, Kim and Kaiser, ApJ 2012, Kim and Kaiser, ApJ 2011

Role of low-energy electrons (few eV) in ice chemistry through resonant dissociative electron attachment Lafosse et al., Surface Science, 2009 Bertin et al., PCCP 2009, Martin et al., Int.J. Mass Spec. 2008

✓ charge transfer

review in Baragiola R, Nuc. Inst. Meth. Phys. Res. B., 2005

✓ electronic desorption (sputtering) by dissociative attachment or Auger desorption

the Wigner-Polanyi equation

crédit : F. Dulieu

$$k_{des}(T) = v e^{-\frac{u}{k_B T}}$$
 $v \approx 10^{12} - 10^{13} s^{-1}$

 \rightarrow (v, E_{des})

F. Dulieu, E. Congiu, Cergy-Pontoise

Thermal desorption

 O_2

 CO_2

SiO_x

HOPG

porous ASW

in the monolayer regime (surface coverage $\theta < 1$)

 \checkmark dependence on the surface coverage θ

Mol.	Surface	$E(\theta) / 1$	К			
		E(0.1)	E(0.2)	E(0.5)	E(0.9)	E(1.0)
O ₂	$\substack{ \mathrm{H}_{2}\mathrm{O}_{(np)} \\ \mathrm{H}_{2}\mathrm{O}_{(c)} \\ \mathrm{SiO}_{x} }$	1161 1149 1255	1082 1092 1146	972 1017 1019	928 975 945	914 969 930
со	$\substack{ \mathrm{H}_{2}\mathrm{O}_{(np)} \\ \mathrm{H}_{2}\mathrm{O}_{(c)} \\ \mathrm{SiO}_{x} }$	1307 1330 1418	1247 1288 1257	1135 1199 1045	956 1086 896	863 1009 867
CO ₂	$\substack{ \mathrm{H}_{2}\mathrm{O}_{(np)} \\ \mathrm{H}_{2}\mathrm{O}_{(c)} \\ \mathrm{SiO}_{x} }$	2346 2514 3008	2258 2451 2798	2197 2364 2487	2197 2341 2317	2236 2361 2271

Molecule Surface Calculated values^a Eads ν 10^{26} molec cm⁻²s⁻¹ Κ 898(30) $H_2O_{(np)}$ 6.9 H₂O(c) 936(40) 7.0SiOx 6.9 895(36) 912(15)b Au6.9 925(25)c $H_2O_{(np)}$ 7.1828(28) H₂O(c) 7.1849(55) SiOx 7.1831(40) CO 858(15)b Au7.2826(24)^d 855(25)^e $H_2O_{(np)}$ 9.3 2267(71)H₂O_(c) 9.52356(83)

Noble et al., MNRAS 2012

9.3

...

....

2269(80)

2690(50)

2982(-)9

formation of islands

Thermal desorption

the most stable isomer interacts more efficiently with the water ice than the higher energy isomer

Non-thermal desorption

problem in accounting for the presence of COMs in cold media

 \checkmark collisions with cosmic rays (heavy ions m > m_{Fe})

 \checkmark chemical desorption

✓ photodesorption

Internuclear Distance (pm)

Chemical desorption efficiency of different reactions

the exothermicity of the chemical bond

Reaction	Exothermicity (eV)	Fraction released in gas phase
$OD + D \rightarrow D_2O$	5.2	>90%
$O_2 + D \rightarrow DO_2$	2.3	<10%
$DO_2 + D \rightarrow D_2O_2$	3.7	<10%
$DO_2 + D \rightarrow OD + OD$	1.6	
$D_2O_2 + D \rightarrow D_2O + OD$	3.1	<10%
$O + O \rightarrow O_2$	5.2	60% Dulieu et al. in prep.
$O + O_2 \rightarrow O_3$	1.1	≤10% Minissale et al. in
		prep.

in the monolayer regime (surface coverage $\theta < 1$)

Dulieu et al. Nature Scientific Reports, 2013

→ Desorption Induced by Electronic transition (DIET)

Photodesorption

a mixture-dependent mechanism

the photodesorption spectrum is the sum of its components photodesorption

→ the desorbing molecule is not necessarily the one which absorbs

Photodesorption

a : a sub-surface CO molecule is promoted into it $A^{1}\Pi$ state by a resonant VUV photon

b: the photodesorption efficiency depends on the energy distribution through:

- intramolecular vibrational energy relaxation (IVR)

- dissociation (w/o indirect desorption)

- intermolecular energy relaxation (EVR)

c : a surface CO receives enough kinetic energy and is ejected from the surface

Photodesorption

- ✓ photodesorption rates are wavelength dependent
 10⁻⁴ − 10⁻² molecules /UV photons
 photodesorption from Lyα not efficient for CO, N₂, CO₂
- ✓ differential photodesorption yields available for any distinct insterstellar regions
- \checkmark photodesorption and photochemistry interconnected (CO₂, COMs ?)

Conclusion

> increasing contribution of laboratory experiments and theoretical studies

> still a lot of work, but we are making progress in understanding solid-state chemistry

efforts in quantifying each competing process (activation energies, cross sections,...)

> challenge to input the microphysics in a gas-grain code with the required level of details