What do we learn from surveys (GAIA, PanSTARRS, VISTA, etc) concerning the structure and phases of the ISM (3D ISM, extinction curve and diffuse bands studies)
L. Cambrésy - Observatoire de Strasbourg

ISM history: In the beginning there was extinction...

- 1823 Olbers and the dark night sky paradox
«l have recently sent to Bode’s Jahrbuch a small essay on the transparency of the cosmic spaces, in which, in my opinion, even if I have not demonstrated, but at least I have made it very probable, that the cosmic spaces are not absolutely transparent»
- 1919 Barnard: holes in star distribution are due to extinction

Extinction and wavelength

- B68: Av~35 mag (Alves et al. 2001)
- Star counts
- Wolf 1923, optical
- 3 mag of extinction decrease the star density by a factor of ~ 10

- Color Excess
- Lada et al. 1994, near-infrared

Extinction mapping

- 2MASS H-Ks
Cambrésy et al. 2002
Av $^{\text {max }}=35$ mag

UKIDSS

1. :\# Large Area Survey (LAS)
2. :\# Galactic Plane Survey (GPS)

4000 sq. degs $K=18.4$ extraGalactic
3. :" Galactic Clusters Survey (GCS) 1400 sq. degs $K=18.7$ Galactic
4. :\# Deep Extragalactic Survey (DXS) 35 sq. degs $K=21.0$ extraGalactic
5. :" Ultra Deep Survey (UDS) 0.77 sq. degs $K=23.0$ extraGalactic

The VISTA surveys (4m, 1.6º FOV)

Spatial resolution vs wavelength and extinction

		Av=5	Av=30	Av=50	Av=80
2MASS	H - Ks	1.0	4.5	15.2	93
UKIDSS / VISTA	H - Ks	0.3	1.3	4.2	26
UKIDSS / VISTA GLIMPSE	Ks - [3.6]	1.1	2.1	3.6	7.9
GLIMPSE	$[3.6]-[4.5]$	1.6	2.6	4.0	7.9
GLIMPSE	$[4.5]-[5.8]$	3.1	4.9	7.0	12.0

- 2MASS, Ks~14.3 mag
- UKIDSS-GPS and VISTA-VVV, Ks~18 mag
- Spitzer GLIMPSE, [3.6]~14 mag, [4.5]~13 mag, [5.8]~11 mag

Spatial resolution vs sky position

Fixed Av GLON=10					
GLAT (deg)	0	5	10	15	20
Resolution	1.0	1.3	1.7	2.7	3.4

Cloud name (l, b)	Trifid $(7.0,-0.2)$	Perseus $(150.6,-13.3)$	L183 $(6.1,+36.7)$
Resolution	1.0	4.0	7.2

Extinction map in the Trifid cloud

(Cambrésy et al. 2011)

- Av(max)=80 mag
(2MASS+UKIDSS+Spitzer)

Extinction curve in the Trifid cloud

(Cambrésy et al. 2011)

- Av(max)=80 mag
(2MASS+UKIDSS+Spitzer)

- Extinction law variations - larger grains of several microns at Av>20 mag ?

Extinction curve

- Universality in the infrared: between 1 and $2 \mu \mathrm{~m}$, at best
- Separation at $\lambda>2 \mu \mathrm{~m}$
- evidence for grain evolution with the density (growth, ice)

Pan-STARRS, 3π survey

- PS1: 1.8m telescope
- $3.2^{\circ} \mathrm{FOV}$
- Each point of the sky is observed $\sim 10 x$ in each filter
- Filters: grizy
- from 0.48 to $0.96 \mu \mathrm{~m}$
- 2 billions objects
- Parallax accuracy 15 mas
- distance < 60 pc
- Data release: mid-2015

Pan-STARRS, distance and reddening photometric parallaxes

- Prior on the star distribution
- Jurić et al. 2008: thin disk, thick disk, oblate halo
- Variant approach of Marshall et al. 2006 with the Besançon model

Pan-STARRS, cloud distances

Pan-STARRS, dust mapping

- Extinction to 4.5 kpc
- Comparison with Planck maps
- A 3D version should be published soon
(Schlafly et al. 2014)

Gaia

Previous missions could measure stellar distances with an accuracy of 10% only up to 100 parsecs*

Sun Galactic Céntre

- Photometry down to $\mathrm{V}=20 \mathrm{mag}$ (1 billion stars)
- Parallax at 10μ as for $\mathrm{V}=10,200-300 \mu \mathrm{as}$ for $\mathrm{V}=20$
- distance error of $\sim 0.2 \mathrm{pc}$ at 200 pc (20 pc for Hipparcos)
- Spectrometry for $\mathrm{V}<16$ (?) mag at $\mathrm{R}=11500$
\rightarrow Diffuse Interstellar Band at 862 nm

Gaia: ISM/star interactions in 3D

Cloud size
10 - 100 pc
OB star distance known at $0.1-1$ pc

- Radiation transfer
- Dust heating
- photo-dissociation and ionization
- 3D morphology

DIBs from the Gaia-ESO Survey

(Puspitarini et al. 2014)

Inversion of line-of-sight

- Differential opacity within the Galactic plane
(Lallement et al. 2014)

Conclusion

- UKIDSS, VISTA, Spitzer
- Extinction in dense regions
- 3D mapping
- Besançon model
- Extinction law variations
- Grain evolution with density
- Pan-STARRS, Gaia and GES
- Diffuse extinction
- 3D ISM/star interactions (Gaia)
- 3D mapping
- galaxy model
- using DIBs
-4 kpc in the plane
- 8 kpc at higher latitudes

NIR color excess vs submm dust emission

- (a): extinction from Herschel submm (Schneider et al. 2012)
- (b): extinction from UKIDSS H-Ks (Cambrésy et al. 2013)
- (a) - (b): longitude variation caused by heating from the nearby OB star

