Results of the CALYPSO survey of young solar-prototars: chemistry, dynamics and disk formation

Sébastien Maret (IPAG), Anaëlle Maury (CEA), Philippe André (CEA), Sibylle Anderl (IPAG), and the CALYPSO team

Why studying Class 0 protostars?

- Youngest protostars: initial conditions for star formation
- Crucial phase for the future evolution of the star: final mass, formation of the protoplanetary disk
- Yet, their structure on 100 AU scales is poorly known:
 - Are protostars single or multiple? Are disks present?
 - What is the launching mechanism of outflows?
 - What is the physical and chemical structure of the envelopes?

CALYPSO

- IRAM Large Program (PI Philippe André)
- Survey of the 17 of the closest Class 0 protostars (d < 300 pc)
- 8 lines and continuum at 1 and 3 mm
- Spatial resolution at 1 mm of 1" or better (i.e. between 100-300 AU)

NGC1333-IRAS2

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \simeq 20 L_{\odot}$
 - $M_{env} \simeq 1.7 \, M_{\odot}$
- Observed with the Plateau de Bure interferometer at 0.8" resolution (~200 AU)

Maret et al.; Maury et al.; Codella et al. (2014)

Envelope and outflow

[•] Inner envelope

Methanol emission

- Compact (0.4" i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope
- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk

Methanol emission

- Compact (0.4" i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope
- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk

Methanol emission

- Compact (0.4" i.e 90 AU) methanol emission centered on the main continuum source (MM1): good probes of the inner envelope
- First moment map hints at a velocity gradient perpendicular to the outflow, but PV diagrams are inconsistent with a Keplerian disk

Complex organics emission

- Many complex organics are detected and resolved spatially
- Emission sizes are consistent with the ice sublimation radius: hot corino

Complex organics emission

- Many complex organics are detected and resolved spatially
- Emission sizes are consistent with the ice sublimation radius: hot corino

NGC1333-IRAS4B

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \simeq 17 L_{\odot}$
 - $M_{env} \simeq 3.1 \, M_{\odot}$
- Anticorrelation between
 N₂H+ and C¹⁸O: due to the
 CO ice evaporation

NGC1333-IRAS4B

- Class 0 protostar located in Perseus (235 pc)
 - $L_{bol} \simeq 17 L_{\odot}$
 - $M_{env} \simeq 3.1 \, M_{\odot}$
- Anticorrelation between
 N₂H+ and C¹⁸O: due to the
 CO ice evaporation

Complex organics emission

- 22 species (mostly COMs) are detected
- The chemical composition of IRAS4B is similar to that of IRAS2
- Most COMs lines arise in the hot corino, but some of the low excitation lines are also present along the outflow

Complex organics emission

- 22 species (mostly COMs) are detected
- The chemical composition of IRAS4B is similar to that of IRAS2
- Most COMs lines arise in the hot corino, but some of the low excitation lines are also present along the outflow

L1527

- Class 0 protostar located in Taurus (140 pc)
 - $L_{bol} \simeq 1.6 L_{\odot}$
 - $M_{env} \simeq 0.8 1.7 M_{\odot}$
- Tobin et al. (2012): Keplerian disk seen in ¹³CO (2-1)

Maret et al. in prep.

 ¹³CO and C¹⁸O emission are inconsistent with Keplerian rotation, but originate in the rotating and infalling envelope:

$$v - v_{\rm LSR} \propto 1/r^{\beta}$$
 with $\beta \approx 1$

SO emission is consistent with Keplerian rotation

 $|v - v_{\rm LSR}| \propto 1/r^{\beta}$ with $\beta \approx 0.5$

 SO emission is well reproduced by a Keplerian disk model with a central mass of 0.2 Msun, and a centrifugal radius of 150 AU (see also Sakai et al. 2014)

First statistical results: disks

- Only one source with a large (> 100 AU)
 Keplerian disk
- Large Keplerian disks are uncommon in Class
 0 protostars !
- L1527 is probably more evolved than other Class 0 protostars
- Evolutionary effect?

First statistical results: COMs

- Five sources have complex organic molecule emission
- High luminosity sources: $L_{bol} \geq 6 \, L_{\odot}$
- Sensitivity effect?
- Chemical variations from one source to the other

Conclusions

- Diversity among the physical and chemical properties of the Class 0 protostars
 - Keplerian disks are uncommon
 - Complex organics are detected only in the most luminous protostars
 - Outflow properties also vary (e.g collimation)
- (Sub-)millimiter surveys are important to understand the formation and evolution of these objects