FORMATION OF MOLECULES AT THE GAS-SURFACE INTERFACE : EXPERIMENTAL AND THEORETICAL ADVANCES

Sabine Morisset, Nathalie Rougeau, François Aguillon, Hervé Bergeron, Dominique Teillet-Billy

Institut des Sciences Moléculaires d'Orsay(ISMO)

Interstellar Medium

- atoms and molecules in gas phase
- interstellar dust grains
 - 1% of mass of ISM
- ISM regions
 - PDR
 - diffuse clouds
 - dense clouds

Interstellar Medium

Cloud type	Diffuse	Dense
Gas density	10 ² - 10 ⁴	10 ⁴ - 10 ⁶
(cm^{-3})		
T_{gas} (K)	50 – 100	10
T _{dust} (K)	20	10
Gas	atoms + <mark>H</mark> 2, CH,	H_2 , CO + lot of
	CH ⁺ , <mark>OH</mark> , NH, CO,	molecules
Dust	amorphous silicate,	ice mantle covered
	carbonaceous	$(CO_2, CO, CH_3OH,$
		CH ₄ , NH ₃ , HCOOH)
100 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

ヘロン 人間 とくほど 人ほど 一日

Interstellar Medium

dust grain = catalyst for molecular formation

 $O + H \stackrel{dust\,grain}{\longrightarrow} OH$

$$OH + H \stackrel{dust \, grain}{\longrightarrow} H_2O$$

 $H + H \stackrel{dust grain}{\longrightarrow} H_2$

dust grain => carbonaceous materials surface => PAH and graphene

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Mechanisms

Eley Rideal

Hot atoms = Harris-Kasemo

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

OH formation through LH mechanism¹

- RPBE-DZP ; MP2 calculations
- ► O(³P)
- physisorbed H & O
- rigid surface
- QCT calculations
 - Large cross section
 - high rovibrational excitation of OH
 - indirect formation mechanism
- potential calculations :
 - good description of physisorption
 - chemisorption not described
 - barriers calculations

Indirect mechanism of OH formation

Phase 1 : Approche de atome O par H Phase 2 : impact de H sur O Phase 3 : rebond(s) de H sur la surface Phase 4 : OH désorbe

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. Bergeron H. et al. J. Phys. chem. A 112 11921 (2008)

$O(^{3}P)$ -graphite

see poster for more details

- coronene, circumcoronene, graphene
- adsorption on top, bridge and hollow sites
- hollow site :
 - physisorption well :
 - Iarge distance
 - independant of the system size
- top and bridge sites :
 - physisorption well same as hollow site
 - chemisorption well :
 - short distance
 - dependant on the system size
- E(top) > E (bridge)

H₂ Formation

Interaction H - graphite-like surface

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Dynamics calculations : rigid surface 2, 3, 4

	Sudden		Adiabatic	
	Morisset et al.	Bonfanti et al.	Morisset et al.	Bonfanti et al.
$P_{H_2}(0.2eV)$	0.4	0.5	0.95	0.8
$P_{H_2}(0.1eV)$	0.2	0.04	0.9	0.7
$P_{H_2}(10 meV)$	0.1	0.05	0.8	0.68

- ▶ $2D^{2,3} = Z_{H1}$ and Z_{H2}
- sudden and adiabatic approximations^{2,3}
- 2 potentials : graphene² and coronene^{2,3}
- ▶ $3D^4 = Z_{H1}, Z_{H2}$ and Z_C
- dynamics = quantum and classical

- resonances
- results depend on the surface
- high vibrational excitation of H₂

(日) (日) (日) (日) (日) (日) (日)

 surface relaxation is important⁴

4. Morisset S. et al. J. Chem. Phys. A 108 8571 (2004)

^{2.} Morisset S. et al. Phys. Chem. Chem. Phys 5 506 (2003)

^{3.} Bonfanti M. Phys. Chem. Chem. Phys. 13 16680 (2011)

Dynamics calculations : relaxed surface 5

Modified Brenner potential molecular dynamics calculations Non collinear geometries

- $E_{col} = 0.015 eV (=> 170 K)$
- Cross section = 1.9Å²

$< E_{int}(H_2) > (eV)$	2.7	68%
< v >	5	
< j >	2	
$< E_{trans}(H_2) > (eV)$	0.49	12%
$< E_{surface} > (eV)$	0.77	20%

- relaxation substrate :
 - v decrease
 - Probabilities increase

Conclusions & Questions

Conclusions

- relaxation of the surface is important
- large probabilities of reaction
- results depend on the type of surface
- Questions
 - Chemisorption barrier 0.2eV
 - How can the H atom chemisorb on the surface ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- model of the surface
 - defects

Sticking of H atom in chemisorption^{6,7}

sticking => surface temperature => phonon in dynamics calculations⁽⁶⁾ => one phonon exchange model

- mixte classical-quantum dynamics
- Energy exchange :
 - acoustic bands
 - Iow sticking in ISM temperature

6. Morisset S. et al. J. Chem. Phys 133 044508 (2010); Cazaux S. et al. A&A 535 A27 (2011) 🗤 E 🚁 E 🚽 🖓 🔍

Sticking of H atom in chemisorption

Sticking conclusion & perspectives

- Iow sticking probabilities
- ER mechanism not favorable
- Role of defects on the chemisorption?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Defects

double adsorption⁸

- para site : no adsorption barrier
- strong stabilization for para and ortho sites

Defect and H₂ Formation

formation through ER mechanism with a defect 9

one H adsorbed in para site

- adsorption without barrier in para site
- QCT dynamics
- lower H₂ vibrationnal state
- good agreement with observations

Conclusion ER mechanism

- Electronic structure calculations
- Dynamics calculations (quantum, classical, QCT etc ...)

- Rigid surface => high v excitation of H₂
- motion of the surface => low v excitation of H₂
- large probability of formation
- chemisorption barrier = 2300K
 - H can stick with low probablity
- around a defect
 - adsorption in para site is barrierless
 - H₂ formation favorable in para site

H₂ Formation through LH mechanism ^{10, 11}

- quantum calculations => rigid substrate
- two H atoms physisorb on the surface
- quantum calculations => high vibrational excitation
- effect of the motion of the substrate

・ロト ・ 同ト ・ ヨト ・ ヨト

3

- 10. Morisset S. et al. J. Chem. Phys 121 6493 (2004), 122 194702 (2005)
- 11. Bachellerie D. et al. J.Phys. Chem A 113 108 (2009)

Sticking of H atom in physisorption ¹²

イロト 不得 トイヨト イヨト

э.

- semi-empirical model -> lattice dynamics
- $T_{surf} = 10K$
- Close Coupling Wave Packet

12. Lepetit B. et al. Phys. Rev. Lett. 107 236102 (2011)

Conclusion

- OH formation
 - rigid surface : indirect mechanism
 - potential calculations need more precision
- H₂ formation
 - ER, LH mechanisms
 - complexity of dust grain model
 - defect
 - role of surface relaxation
 - complexity of dynamics methods : degrees of freedom
- Astrophysical models
 - code rate equations ^{13, 14}
 - KMC¹⁵
 - these codes need
 - adsorption, desorption energy
 - barrier
 - probabilities of reaction (or cross section)

(日) (日) (日) (日) (日) (日) (日)

- 13. Le Bourlot et al. A&A 541 A76 (2012)
- 14. Cazaux et al. A&A 604 222 (2004)
- 15. Cazaux et al. A&A 535 A27 (2011)