Modeling and predicting the shape of the FIR-to-submm emission in UCHII regions and cold clumps

Accepted for publication in A&A arXiv1409.6892

<u>D. Paradis</u>,

C. Mény, A. Noriega-Crespo, R. Paladini, J.-P. Bernard, C. Bot, L. Cambrésy, K. Demyk, V. Gromov, A. Rivera-Ingraham, M. Veneziani

Context

<u>Why not using a T- β (with β =2) model anymore?</u>

★ the FIR/ submm dust emissivity appears to have a more complex dependence on λ than described by the T- β model: emission spectrum flatter in the submm than a modified black-body emission with $\beta = 2$

★ The dust emissivity appears to be T-dependent: emissivity spectra flatter with increasing dust T

=> similar variations of β with T and λ in laboratory spectroscopic experiments on amorphous dust analogs (*Mennella et al., 1998; Boudet et al., 2005;Coupeaud et al., 2011*).

Results confirmed using Herschel and Planck data in the MW (*Paradis et al., 2010, 2012*) and in the MCs (*Galliano et al., 2011; Gordon et al., 2014, Planck Collaboration XVII, 2011*)

➢ 98% of amorphous dust in the ISM

▶ <u>Double description of disorder in amorphous solids</u>: the TLS model *Mény et al., 2007*

• Disordered Charge Distribution (DCD): interaction between the electromagnetic wave and acoustic oscillations in the disordered charge of the amorphous material (Vinogradov, 1960; Schlomann, 1964) => T-independent

• Two Level System (TLS): interaction of the electromagnetic wave with a simple distribution of asymmetric double-well potential => T-dependent

In the TLS model the emissivity spectral index varies as a function of T and λ

➢ 98% of amorphous dust in the ISM

▶ <u>Double description of disorder in amorphous solids</u>: the TLS model *Mény et al., 2007*

• Disordered Charge Distribution (DCD): interaction between the electromagnetic wave and acoustic oscillations in the disordered charge of the amorphous material (Vinogradov, 1960; Schlomann, 1964) => T-independent

• Two Level System (TLS): interaction of the electromagnetic wave with a simple distribution of asymmetric double-well potential => T-dependent

In the TLS model the emissivity spectral index varies as a function of T and λ

Context

Why comparing dust emission in UCHII regions and cold clumps ?

UCHII regions:

- some of the most luminous objects in the Galaxy at FIR wavelengths

- ideal targets to look for warm/hot dust

=> dust emission and dust processes occurring in warm/ hot environments are poorly known in the FIR/ submm

Cold clumps:

- molecular clouds with cold dust

- ideal targets to study the initial phases of star formation, i.e. pre-stellar core fragmentation

Goal: investigate the potentially distinct dust properties depending on the environment and to be able to predict the FIR-to-mm emission in cold and warm regions.

Selection of regions

UCHII regions

12 targets from the IRAS PSC observed in both Herschel/Hi-GAL and BGPS surveys 100 μm IRAS flux >10³ Jy

Selection of regions

UCHII regions

12 targets from the IRAS PSC observed in both Herschel/Hi-GAL and BGPS surveys 100 μm IRAS flux >10³ Jy

Cold Clumps:

12 targets of cold molecular clouds (previously identified from ¹³CO, recently analyzed using a 3D-Galactic inversion on Herschel observations, based on HI and ¹³CO data (Marshall et al., 2014 in prep.) => Selection of clumps with cold CO phase

Method

Aperture photometry to extract dust emission:

2 SEDs/region :

- central part that has bright pixels (not intented to describe the core of the region) 2-pixels radius (27.8") (27.8") (27.8") _

inner and outer radius of two and four pixels (27.8" and 55.6")

<u>2 models:</u>

7

TLS model (see Paradis et al., 2011 and Mény et al. 2007) **

D Used to Galacti	iffuse (diff.) reproduce the c diffuse medium	Compact Source (CS) Used to reproduce ARCHEOPS compact	Standard (Std.) Used to the Galactic diffuse medium and compact sources					
submm β	≈ 1.5 for T=30-40 K	submm $\beta \approx 2.5$ for T=8-13K	submm $\beta \approx 2$ for T=17-25 K					
* T-β model with $\beta = 2, 2.5$ and 1.5								
χ^2 minimization between 70 μ m-1.1 mm for UCHII regions								

160 μm-1.1mm for cold clumps

Regions	TLS $T-\beta$ Dust								Temperature
Regions	Diff.	CS	Std.	1-σ	β=2	β=1.5	β <i>=</i> 2.5	1-σ	
IRAS 17279-3350 (1)	26.13	25.81	25.85	0.17	25.29	29.17	22.70	3.26	
IRAS 17279-3350 (2)	30.72	31.27	30.73	0.31	28.68	35.29	24.71	5.34	man value of T discoursions
IRAS 17455-2800 (1)	29.17	29.17	29.12	0.03	28.21	33.21	24.76	4.25	mean value of 1 dispersion.
IRAS 17455-2800 (2)	27.21	26.76	26.75	0.26	24.70	31.72	20.20	5.81	• 5 3 K and 3 0 K for UCHII regions and CC (T
IRAS 17577-2320 (1)	31.10	31.17	30.81	0.19	30.14	35.08	26.67	4.23	• 5.5 K and 5.0 K for OCHII regions and CC (1 -
IRAS 17577-2320 (2)	27.57	27.67	27.30	0.19	25.78	31.56	22.26	4.70	β model with the $\neq \beta$)
IRAS 18032-2032 (1)	31.67	31.80	31.66	0.08	30.29	36.22	26.61	4.85	$p \mod w \mod (p + p)$
IRAS 18032-2032 (2) IRAS 18116 1646 (1)	31.19	32.03	31.21	0.10	27.44	36.20	22.55	0.92	• 0 38 K and 0 71 K (TLS model)
IRAS $18116-1646(2)$	32.63	34.25	32.68	0.19	29.13	37.68	20.05	4.65	
IRAS 18317-0757 (1)	36.65	37 27	36.69	0.35	34.92	42.66	30.03	6.37	
IRAS 18317-0757 (2)	27.78	28.25	27.76	0.28	25.72	32.20	21.75	5.28	
IRAS 18434-0242 (1)	37.76	38.76	38.19	0.50	36.19	44.21	30.75	6.77	
IRAS 18434-0242 (2)	26.20	26.14	26.13	0.04	24.48	30.62	20.69	5.01	
IRAS 18469-0132 (1)	28.14	28.15	28.11	0.02	27.21	31.69	24.16	3.79	$\Box = \Box =$
IRAS 18469-0132 (2)	33.54	34.76	33.63	0.68	30.73	38.73	26.15	6.37	Examples of 1 dispersion for SEDs with similar
IRAS 18479-0005 (1)	32.69	33.15	32.69	0.27	31.26	37.28	27.24	5.05	bast w? for each model
IRAS 18479-0005 (2)	29.26	29.75	29.24	0.29	27.03	34.20	22.72	5.80	Dest χ^2 for each model
IRAS 18502 0051 (1)	28.10	28.10	28.06	0.02	27.14	31.72	23.77	3.99	
IRAS 18502 0051 (2)	24.04	23.57	23.77	0.24	22.52	27.79	18.78	4.53	
IKAS 19442 $2427(1)$	31.19	31.20	31.18	0.04	30.17	35.25	26.27	4.50	
IRAS 19442 $2427(2)$ IRAS 19446 2505 (1)	20.74	29.13	20.71	0.23	20.90	33.23 13.23	25.17	5.08	
IRAS 19446 2505 (1) IRAS 19446 2505 (2)	37.63	38.23 41.25	38.13	1.96	33.56	43.23	27 74	8.03	
Mean std. deviation	-	-	-	0.38	-		- (5.33	\rightarrow the choice of the model has a real and strong
Cold Clump-1 (1)	18.65	17.96	18.52	0.37	18.03	21.56	15.66	2.91	
Cold Clump-1 (2)	16.63	15.62	16.38	0.53	15.96	19.94	13.88	3.08	impact on the T determination.
Cold Clump-2 (1)	20.40	19.60	20.17	0.41	19.58	23.78	16.93	3.45	
Cold Clump-2 (2)	17.01	15.58	16.59	0.74	16.21	20.64	13.80	3.47	
Cold Clump-3 (1)	17.11	15.76	16.86	0.72	16.44	20.17	14.05	3.08	
Cold Clump-3 (2)	19.15	17.14	18.66	1.05	18.12	23.25	15.01	4.16	
Cold Clump-4 (1)	14.61	13.97	14.47	0.34	14.17	16.50	12.64	1.94	
Cold Clump-4 (2)	16.98	12.16	16.52	0.89	16.12	20.18	13.65	3.29	the TLS model does not present the same artifact in
Cold Clump 5 (1)	14.17	13.10	16.52	1.27	16.10	10.13	12.04	2.05	$f_{1} = \frac{1}{2} \int dx = \frac{1}{2} \int d$
Cold Clump $-5(2)$	11.71	10.58	11.54	0.61	11.47	13 20	10.03	1.50	terms of temperature determination as a 1-p model
Cold Clump-6 (2)	15 19	13.30	14.89	1.02	14 59	18.18	12.03	2 99	
Cold Clump-7 (1)	13.64	12.69	13.55	0.52	13.19	15.25	11.67	1.80	
Cold Clump-7 (2)	19.59	17.91	19.13	0.87	18.31	24.16	15.38	4.47	
Cold Clump-8 (1)	12.18	11.13	12.04	0.57	11.95	13.70	10.47	1.62	
Cold Clump-8 (2)	16.56	14.25	16.04	1.21	15.67	20.16	12.99	3.62	
Cold Clump-9 (1)	18.30	17.41	18.04	0.46	17.56	21.22	15.33	2.97	
Cold Clump-9 (2)	17.65	15.32	17.12	1.22	16.65	21.74	13.72	4.06	
Cold Clump-10 (1)	19.72	19.07	19.63	0.35	19.09	22.75	16.52	3.13	
Cold Clump-10 (2)	20.53	18.82	20.10	0.89	19.15	25.17	15.96	4.68	
Cold Clump-11 (1)	13.96	13.02	13.67	0.48	13.51	15.71	11.95	1.89	
Cold Clump 11 (2)	10.70	15.05	10.45	0.89	10.03	20.18	13.50	3.31 2.07	
Cold Clump 12 (1)	13.22	14.55	13.07	0.50	14.00	17.22	11.10	2.07	
Mean std. deviation		-		0.71	-		-11.70	3.00	D. Daradia, DCMI 2014
									D. Parauls, PCIVII 2014

Modeling

Results: Specific dust properties in each environment

:	Regions		Norm. χ^2_{TLS}		Norm. $\chi^2_{T-\beta}$			
		Diff.	CS	Std.	$\beta = 2$	$\beta = 1.5$	$\beta = 2.5$	
UCHII regions	Total nb. of best χ^2	13 (52%)	3 (12%)	9 (36%)	9 (37.5%)	15 (62.5%)	0 (0%)	
OCTIII ICgiolis	Total χ^2	15.811	23.817	15.899	24.679	15.478	71.733	
Cold Clumps	Total nb. of best χ^2	2 (8%)	14 (56%)	9 (36%)	12(48%)	1(4%)	12 (48%)	
eora eramps	Total χ^2	19.730	13.347	15.367	14.502	46.681	17.970	

*<u>TLS:</u>

UCHII: CS param. do not give the best description of spectra (best χ^2 for only 12% of the SEDs), while diff. param. give better solution (52%).

CC: CS param. satisfactory for 56% of the SEDs (against 8% diff. param.)

=> SEDs from UCHII regions and CC are not reproduced by the same set of parameters

***<u>T-β:</u>**

UCHII: 62.5% of SEDs well reproduced using β =1.5, 37.5% using β =2, and 0% with β =2.5.

CC: only 4% of the CC SEDs have the best χ^2 using a β of 1.5. number of best χ^2 equally distributed between $\beta=2$ and $\beta=2.5$ (48%)

Results: Specific dust properties in each environment

:	Regions	Norm. χ^2_{TLS}			Norm. $\chi^2_{T-\beta}$			
		Diff.	CS	Std.	$\beta = 2$	$\beta = 1.5$	$\beta = 2.5$	
UCHII regions	Total nb. of best χ^2	13 (52%)	3 (12%)	9 (36%)	9 (37.5%)	15 (62.5%)	0 (0%)	
OCTITI Tegiolis	Total χ^2	15.811	23.817	15.899	24.679	15.478	71.733	
Cold Clumps	Total nb. of best χ^2	2 (8%)	14(56%)	9 (36%)	12 (48%)	1(4%)	12 (48%)	
eora eramps	Total χ^2	19.730	13.347	15.367	14.502	46.681	17.970	

*<u>TLS:</u>

UCHII: CS param. do not give the best description of spectra (best χ^2 for only 12% of the SEDs), while diff. param. give better solution (52%).

CC: CS param. satisfactory for 56% of the SEDs (against 8% diff. param.)

⇒ SED → UCHII regions and CC have \neq dust teters properties (β changes with the environment)

***<u>T-β:</u>**

UCHII: 62.5% of SEDs well reproduced using β =1.5, 37.5% using β =2, and 0% with β =2.5.

CC: only 4% of the CC SEDs have the best χ^2 using a β of 1.5. number of best χ^2 equally distributed between $\beta=2$ and $\beta=2.5$ (48%)

Results: Specific dust properties in each environment

	Regions	Norm. χ^2_{TLS}					
	>	Diff.	CS	Std.			
\mathcal{N}	Total nb. of best χ^2	13 (52%)	3 (12%)	9 (36%)			
ۍ ا	Total χ^2	15.811	23.817	15.899			
Ċ.	Total nb. of best χ^2	2 (8%)	14 (56%)	9 (36%)			
$\mathcal{O}_{\mathcal{I}}$	Total χ^2	19.730	13.347	15.367			

CS parameters used to reproduce the Archeops compact sources in our Galaxy are also the best parameters to describe the Galactic cold clumps analyzed in this work

=> same set of param. able to reproduce various cold sources observed with \neq instruments at $\neq \lambda$.

Most cold clumps have similar general properties

IRAS-Archeops compact sources

Results: comparing TLS and T-beta models

	Regions		Norm. χ^2_{TLS}		Norm. $\chi^2_{T-\beta}$			
		Diff.	CS	Std.	$\beta = 2$	$\beta = 1.5$	$\beta = 2.5$	
UCHII regions	Total nb. of best χ^2	13 (52%)	3 (12%)	9 (36%)	9 (37.5%)	15 (62.5%)	0(0%)	
OCTITI Tegiolis	Total χ^2	15.811	23.817	15.899	24.679	15.478	71.733	
Cold Clumps	Total nb. of best χ^2	2 (8%)	14 (56%)	9 (36%)	12 (48%)	1 (4%)	12 (48%)	
e ena enamps	Total χ^2	19.730	13.347	15.367	14.502	46.681	17.970	

Modeling with:

- ★ the TLS model (using the adequate set of params) or
- ★ a T- β model (using the adequate β)
- \Rightarrow same result for the goodness of fits because of the lack of strong constraints at long λ

The TLS model takes the flattening of the spectra in the submm/mm into account, contrary to T- β models And with an incorrect β , a T- β model can lead to an **incorrect description** of the dust emission (very bad $\chi 2$)

TLS model with std param. is able to reproduce the emission of each type of environment well.

=> First model that is able to describe various types of medium with a single set of param. by only changing the dust T.

Polynomial+Gaussian fit of the TLS model

The TLS model predicts emissivity variations as a function of λ and T.

Polynomial+Gaussian fit on the model for each set of parameters (diffuse, cold sources, and standard) [T in the range 7 -100]K; λ [100 µm – 2mm]

IDL code available here: http://userpages.irap.omp.eu/~dparadis/TLS/ compute_TLS_poly_gaussian_fit.pro

Predictions

Comparison of the Polynomial +Gaussian fit (using std. param.) with known SEDs of UCHII regions (from Paladini et al., 2012) and cold clumps (from Juvela et al., 2010). Only T in our fits varies from one SED to the other.

We are able to predict the dust emission from FIR to submm in various environments

Conclusions

- \rightarrow variations in the dust optical properties with environments.
- → Contrary to any fixed value of β (1.5, 2 and 2.5) that mostly fails to give good χ 2 in both warm and cold regions, the use of the standard TLS parameters can give reasonable results in all cases.
- → Using a T- β model for which the β value is unknown can lead to an incorrect description of the dust emission.
- → the TLS model does not present the same artifact in terms of T determination as a T- β model, and is in particular a better description of the FIR-to-mm emission
- → We also reported an easy way to determine the emission at any T and λ for each set of TLS parameters by giving the coefficients of a polynomial+Gaussian fit

http://userpages.irap.omp.eu/~dparadis/TLS/compute TLS poly gaussian fit.pro