(sub-)mm, high angular resolution observations of protoplanetary disks: PdBI/NOEMA & ALMA

Vincent Pietu (IRAM)

A. Dutrey, S. Guilloteau, L. Reboussin, V. Wakelam, E.di Folco (LAB), E. Chapillon (LAB/IRAM), Y. Boehler (UNAM, Mexico)

Why (sub-)mm interferometry ?

- Protoplanetary disks are (mostly) cold
 - Rotation lines
 - Dust thermal emission
- Protoplanetary disks are dense
 - Optically thick at shorter wavelength
- Protoplanetary disks are small
 - Few arcseconds for the closest

Dust continuum emission

- (mainly) optically thin
- Allowed first direct imaging of cavities within protoplanetary disks

Pietu et al. 2006

Dual-frequency continuum survey in Taurus

Guilloteau et al. 2011

Varial radiation of grain properties

Comparison of brigthness distribution at two frequencies allows to measure radial distribution of dust absorption coefficient spectral index.

Varies from 0 (big grains compared to wavelength) within ~60-80 au to 1.7 (ISM like) outside.

Birnstiel et al. 2011

Faint disks are small

- Survey of 9 mm faint disks with PdBI at 220 GHz
- All of them are small, and most are quite dense.

Pietu et al. 2014

A dust trap ?

- ALMA B9 observations of IRS48 (Herbig Ae star).
- Asymetry of the dust continuum
- Possibly tracing dust traping in a local pressure extremum

Van der Marel et al 2013, Science

- If one consider a geometrically thin disk
- Axisymetric
- In Keplerian rotation
- One obtains the typical shape for the channels.

Example: absorption lines

Guilloteau et al. 2006

Non Local Thermodynamic Equilibrium

Pavlyuchenkov et al. 2007

Measuring the turbulence

Local line width:

$$\Delta V(r) = \sqrt{\frac{2kT(r)}{\mu m_H} + \delta V_{\rm tu}(r)^2}$$

- More precise if using a heavy molecule
- Requires a good knowledge of the temperature structure and a good spectral resolution.
- 0.3 km/s (0.4 Mach number)

Hughes et al. 2011, Guilloteau et al. 2012

Measurement of the vertical temperature gradient

CO vertical distribution

- HD163296
- ALMA Science Verification
 data
- One sees two disks

De Gregorio et al. 2013, Rosenfeld et al 2013

CO vertical distribution

De Gregorio et al 2013

Rosenfeld et al 2013

CO snowline

- Snowline corresponds to the region below which water condensates
- Found using ¹³CO(2-1) by *Qi et al 2011*.
- DCO⁺ confined in a ring where temperature 19< T < 21 K. (no H_2D^+ if hotter, no CO if colder).

HD163296: *Matthews et al. 2013*

Detection of HC₃N and c-C₃H₂

NOEMA

- Double the number of antenna at PdB from 6 to 12
- Extension of the baselines from 0.8 to 1.6 km
- Increase of IF bandwidth from 8 to 32 GHz

NOEMA RF Band Specifications				
Band	NOEMA-1	NOEMA-2	NOEMA-3	NOEMA-3
RF Frequency (GHz)	72 -116	127-179	200-276	275-373

LO Freq

NOEMA and ALMA: what's next ?

- Sensitivity is the limiting factor
 - We want to study fainter features
 - We want to go to high angular resolution
- NOEMA and ALMA will provide sensitivity
- Self-calibration helps a lot
- Survey aspects instrumental in understanding physical processes
- Wide-frequency coverage to allow efficient multiplexing (up to complete spectral surveys).

"Chemistry" survey

- One can have a taste of future surveys with ALMA/NOEMA by looking at what's recently been done with IRAM/30m thanks to EMIR and FTS.
- ¹³CO, CN, H₂CO, SO in 40
 sources (*Guilloteau et al. 2013*)
- HCO⁺, HCN, C₂H, SO, CS, H¹³CO⁺ in 30 sources (*Reboussin et al. In prep*)

Exciting time ahead

Thank You for Your Attention