Interstellar molecules uncover cosmic rays properties

Solenn Vaupré, P. Hily-Blant, C. Ceccarelli, G. Dubus, S. Gabici and T. Montmerle

Institute of Planetology and Astrophysics of Grenoble (IPAG)

Oct 30, 2014

Today

15 orders of magnitude in energy...

... from radio observations to cosmic rays properties

Interest in cosmic-rays

• Star formation

- Disk turbulence
- ISM chemistry
- Space weather
- High energy physics

Effects of cosmic-rays on dense gas

CR-induced chemistry of DCO^+ and HCO^+

CR-induced chemistry of DCO^+ and HCO^+

 $\{ \text{ abundance ratio } \mathrm{DCO^+/HCO^+} + \text{temperature } \} \Rightarrow \text{electron abundance } \mathrm{x_e}$

$x_e \propto \sqrt{\zeta/n_{\text{H}}}$

 \rightarrow need physical conditions to make sure no ionization by UV/X (i.e. high CO column density)

- $\bullet~{\rm DCO^+/HCO^+}$ is determined by electrons and gas temperature
- ${\ensuremath{\, \rm e}}^-$ abundance is linked to ζ through gas density
- make sure high column density so ionization is dominated by CR

 \Rightarrow We need physical conditions and $\rm DCO^+/\rm HCO^+$ ratio to derive ζ

(2) CR ionization rate ζ from radio observations

Galactic view

Galactic view

The W28 complex

[GeV- TeV CR $\rightarrow \gamma$ -ray] HESS contours (TeV emission)

[MeV-GeV CR \rightarrow ionization] molecular cloud (CO) [5-15, 15-25 km s⁻¹]

Solenn Vaupré (IPAG)

ISM molecules uncover CR properties

The W28 complex

1 Source: W28 SNR/MC association

(2) CR ionization rate ζ from radio observations

Method

Spectra

Velocity (km/s)

Pos.	Δv	n_{H_2}	T _{kin}	N(C ¹⁸ O)	A_V	$N(H^{13}CO^+)$	$N(\mathrm{DCO^{+}})$	[DCO ⁺] [HCO ⁺]	ζ
	$[\mathrm{km} \mathrm{s}^{-1}]$	$[10^3 \text{ cm}^{-3}]$	[K]	$[10^{15} \text{ cm}^{-2}]$	[mag]	$[10^{12} \text{ cm}^{-2}]$	$[10^{12} \ {\rm cm}^{-2}]$	[]	$[10^{-17}\ s^{-1}]$
N1	3.5	$0.6 \{0.2 - 1\}$	15 ± 5	4 {2-6}	21 {11 - 32}	0.8 - 1.3	< 0.22	< 0.005	
N5	3.0	4 {2 - 5}	10 ± 2	3 {2 - 8}	$16 \{11 - 32\}$	1.1 - 1.4	0.89 - 1.30	0.014 - 0.020	
N6	3.0	$4\{2-6\}$	13 ± 3	$6 \{4 - 20\}$	32 {21 - 105}	1.8 - 2.5	0.79 - 1.30	0.008 - 0.012	
$N2^{\dagger}$	5.0	> 2	16 ± 2	20 {15 - 30}	105 {79 - 158}	5.6 - 8.9	1.10 - 2.00	0.003 - 0.006	
N7	2.5	$2\{2-5\}$	10 ± 2	$4 \{3 - 10\}$	$21 \{16 - 53\}$	0.6 - 0.9	< 0.25	< 0.007	
N8	3.5	$1 \{0.6 - 2\}$	8 ± 1	$3\{2-4\}$	$16 \{11 - 21\}$	< 0.2	< 0.35	-	
N3	3.5	$6 \{4 - 10\}$	8 ± 1	$6\{5-7\}$	32 {26 - 37}	1.0 - 1.4	< 0.35	< 0.006	
N4	3.0	$2\{0.6-4\}$	12 ± 3	$2\{2-3\}$	$11\{5-16\}$	1.0 - 1.4	< 0.35	< 0.006	
SE1	4.0	$2\{1-5\}$	19 ± 5	6 {5 - 20}	32 {26 - 105}	0.4 - 0.56	0.79 - 1.0	0.032 - 0.05	
SE2	3.0	$4\{2-10\}$	8 ± 2	$0.9 \{0.4 - 20\}$	$5\{2-105\}$	< 0.2	< 0.28	-	
SW2	1.5	$2\{1-4\}$	20 ± 4	$4 \{3 - 10\}$	$21 \{16 - 53\}$	< 0.1	< 0.22	-	
SW4 [†]	1.5	6 {4 - 10}	16 ± 2	$1.5 \{1 - 3\}$	$5\{5-16\}$	0.5 - 0.8	< 0.25	< 0.009	

CR ionization rate ζ from radio observations

ζ from observations (astrochem code)

CR ionization rate ζ from radio observations

ζ from observations (astrochem code)

CR ionization rate ζ from radio observations

ζ from observations (astrochem code)

Artist view

Artist view

If DCO^+/HCO^+ lies on the LIP... ... OK but can't exclude some HIP

If DCO^+ not detected pprox no LIP on the line of sight

If $\rm DCO^+/\rm HCO^+$ not on LIP HIP dominant on the line of sight \rightarrow structure

Pos.	Δv	$n_{\rm H_2}$	T _{kin}	<i>N</i> (C ¹⁸ O)	A_V	$N(H^{13}CO^+)$	$N(\rm DCO^+)$	[DCO ⁺] [HCO ⁺]	ς
	$[km s^{-1}]$	$[10^3 \text{ cm}^{-3}]$	[K]	$[10^{15} \text{ cm}^{-2}]$	[mag]	$[10^{12} \text{ cm}^{-2}]$	$[10^{12} \text{ cm}^{-2}]$		$[10^{-17} \ s^{-1}]$
N1	3.5	$0.6 \{0.2 - 1\}$	15 ± 5	4 {2-6}	21 {11 - 32}	0.8 - 1.3	< 0.22	< 0.005	> 13
N5	3.0	4 {2 - 5}	10 ± 2	3 {2 - 8}	$16 \{11 - 32\}$	1.1 - 1.4	0.89 - 1.30	0.014 - 0.020	130 - 330
N6	3.0	$4\{2-6\}$	13 ± 3	$6 \{4 - 20\}$	32 {21 - 105}	1.8 - 2.5	0.79 - 1.30	0.008 - 0.012	130 - 400
$N2^{\dagger}$	5.0	> 2	16 ± 2	20 {15 - 30}	105 {79 - 158}	5.6 - 8.9	1.10 - 2.00	0.003 - 0.006	-
N7	2.5	2 {2 - 5}	10 ± 2	$4 \{3 - 10\}$	$21 \{16 - 53\}$	0.6 - 0.9	< 0.25	< 0.007	> 130
N8	3.5	$1 \{0.6 - 2\}$	8 ± 1	$3\{2-4\}$	$16 \{11 - 21\}$	< 0.2	< 0.35	-	-
N3	3.5	$6 \{4 - 10\}$	8 ± 1	$6\{5-7\}$	32 {26 - 37}	1.0 - 1.4	< 0.35	< 0.006	> 260
N4	3.0	$2\{0.6-4\}$	12 ± 3	$2\{2-3\}$	$11\{5-16\}$	1.0 - 1.4	< 0.35	< 0.006	> 40
SE1	4.0	$2\{1-5\}$	19 ± 5	6 {5 - 20}	32 {26 - 105}	0.4 - 0.56	0.79 - 1.0	0.032 - 0.05	0.2 - 20
SE2	3.0	$4\{2-10\}$	8 ± 2	$0.9 \{0.4 - 20\}$	$5\{2-105\}$	< 0.2	< 0.28	-	-
SW2	1.5	$2\{1-4\}$	20 ± 4	$4 \{3 - 10\}$	$21 \{16 - 53\}$	< 0.1	< 0.22	-	-
SW4 [†]	1.5	$6 \{4 - 10\}$	16 ± 2	1.5(1-3)	5(5-16)	0.5 - 0.8	< 0.25	< 0.009	-

Assumed distance to W28: 2 kpc

Padovani&Galli (20013) collection of observations

1 Source: W28 SNR/MC association

2 CR ionization rate ζ from radio observations

(1) CR ionization

- GeV γ -rays in the North, NOT in the South (FERMI Abdo et al. 2010)
- TeV γ -rays in the North AND in the South (HESS Rowell et al. 2007)
- \Rightarrow ionization by 0.1-1 GeV CR

[Some of these same CR also contribute to γ emission (E > 0.28 GeV)]

Solenn Vaupré (IPAG)

CR properties

(2) CR escape

- GeV CR still bound to SNR shell
- TeV CR escape sooner
- \Rightarrow ionizing CR have not reached the southern cloud yet
- \Rightarrow diffusion coeff estimate

Specific results on CR

Diffusion coefficient

$$D_{(pprox 10~{
m GeV})}\gtrsim 3 imes 10^{27} \left(rac{R}{10~{
m pc}}
ight)^2 \left(rac{t}{10^4~{
m yr}}
ight)^{-1} {
m cm}^2/{
m s} \; ,$$

substantial agreement with e.g. Nava&Gabici (2013)

Ionization losses timescale

$$\tau_{ion} ~\approx~ 14 ~ \left(\frac{n_{\rm H}}{10^3 ~{\rm cm}^{-3}}\right)^{-1} \left(\frac{E}{{\rm MeV}}\right)^{3/2} {\rm yr} ~. \label{eq:tion}$$

 $D \sim R_d^2/ au_{ion} \Rightarrow$ only CR ≥ 100 MeV can spread over $\gtrsim 3$ pc

Conclusion

From radio to CR properties

- upper limit on $\rm DCO^+/\rm HCO^+{\Rightarrow}$ lower limit on ζ
- observation of energy-dependent CR diffusion away from the SNR
- high ionization due to 0.1-1 GeV cosmic-rays

Perspectives

- Increase number of sources (W28, W51C, W44, ...)
- Increase number of species to characterize ζ (tracers)

See Vaupré+ (2014), A&A, 568 See also [W51C]: Ceccarelli+ (2011), ApJL, 740 ; Dumas+ (2014), ApJL, 786